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Abstract

Stablecoins are at the center of debate surrounding decentralized finance. We develop a

dynamic model to analyze the instability mechanism of stablecoins, the complex incentives of

stablecoin issuers, and regulatory proposals. The model rationalizes a variety of stablecoin

management strategies commonly observed in practice and characterizes an instability trap:

Stability can last for a long time, but once debasement happens following negative shocks to

the issuer’s reserves, price volatility persists. Capital requirement improves price stability but

still fails to eliminate debasement. Restricting the riskiness of reserve assets can surprisingly

destabilize price. Finally, we show that data privacy regulation has an unintended benefit of

reducing the price volatility of stablecoins issued by data-driven platforms (e.g., Facebook).
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1 Introduction

More than a decade ago, Bitcoin heralded a new era of digital payments and decentralized fi-

nance (Brunnermeier, James, and Landau, 2019; Duffie, 2019). The substantial volatility of first-

generation cryptocurrencies limits their utility as a means of payment.1 Stablecoins aim to maintain

a stable price against fiat currencies and meet the rising demand for blockchain-based safe assets in

the fast growing DeFi (Decentralized Finance) sector. The market value of stablecoins more than

tripled from January to November 2021, and the boom attracted enormous attention from pol-

icy makers. On November 1, 2021, U.S. President’s Working Group on Financial Markets, joined

by the Federal Deposit Insurance Corporation (FDIC) and the Office of the Comptroller of the

Currency (OCC), released a report on the recent developments of stablecoins (U.S. Department

of the Treasury, 2021). U.S. Secretary of the Treasury Janet Yellen emphasized the potential of

stablecoins as beneficial payments options and risks due to the lack of legal oversight. In response,

U.S. Senate held a hearing on the risks of stablecoins on December 14, 2021.2

In this paper, we aim to provide clarity on the instability mechanism of stablecoins, evaluate

regulatory proposals, and analyze the complex incentives of stablecoin issuers with a particular

focus on large digital platforms. We formalize the operation of a stablecoin issuer in a dynamic

continuous-time model and specify the stablecoin demand following the literature on agents’ trans-

actional demand for low-risk assets (Gorton and Pennacchi, 1990; Moreira and Savov, 2017). The

equilibrium features a rich set of dynamic strategies of stablecoin management commonly observed

in practice (Bullmann, Klemm, and Pinna, 2019), such as open market operations, requirement of

users’ collateral, user fees or subsidies, targeted price band, and the issuances of governance tokens

(or “secondary units”) that function as equity shares of the stablecoin issuer.3

A key feature of our model is that the stablecoin issuer’s reserve assets are risky, which is in

line the practice. For example, Tether, the issuer of the largest stablecoin by market capitalization

(USDT), holds a significant share of reserves in commercial papers of unknown quality.4 Shocks to

the reserves may trigger debasement in equilibrium that resemble the recent episodes, such as the

1Flaws in the protocol design of early cryptocurrencies limit payment scalability (Hinzen, John, and Saleh, 2019).
2For the full hearing, “Stablecoins: How Do They Work, How Are They Used, and What Are Their Risks?”, please

refer to the website of U.S. Senate Committee on Banking, Housing, and Urban Affairs (www.banking.senate.gov).
3An alternative to collateralization is to use algorithmic supply rules to stabilize price but success has been limited.
4According to De and Hochstein (2021), USDT is backed by dollar cash, cash equivalents, and commercial papers

(75.85%), secured loans (12.55%), corporate bonds, funds, and precious metals (9.96%), and other investments
including cryptocurrencies (1.64%). The default of China Evergrande Group on its commercial papers disrupted
cryptocurrency markets precisely due to the concern over Tether’s exposure to the Chinese real estate sector (See
Lewitinn (2021)). Stablecoins backed by safe assets are rare and simply a form of narrow banking (Pennacchi, 2012).
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8% debasement of USDT in April 2017 and the 3.5% debasement of USDC (USD Coin) in February

2020. The stablecoin issuer can debase its stablecoins to avoid liquidation. In contrast, traditional

safe asset issuers, both banks and shadow banks, have to honor their debts or become insolvent.

However, the debasement option induces an amplification mechanism that generates a bimodal

distribution of states. In states of high reserves, the issuer maintains a fixed exchange rate, so the

stablecoin demand is strong and transaction volume is high. Through open market operations and

fees on stablecoin users, the issuer generates revenues that further grow its reserves. In states of

low reserves, the issuer off-loads risk to users through debasement, which depresses the stablecoin

demand and thus reduces the issuer’s revenues. The issuer can only rebuild its reserves slowly

and thus falls into an instability trap. Stability can last for a long time, but once debasement

happens following negative shocks to the stablecoin issuer’s reserves, volatility persists. Such ergodic

instability resembles that in Brunnermeier and Sannikov (2014).5

We show that capital requirement reduces the volatility of stablecoin price and demonstrate

how the optimal capital requirement varies with key parameters that drive the stablecoin demand

or the issuer’s trade-offs. In particular, we highlight that stablecoin payment systems with stronger

network effects, for example, through social interactions and e-commerce activities (e.g., Facebook),

should be subject to tougher capital requirements. Notably, regulations restricting the riskiness of

the reserve assets have different effects than capital requirement. In particular, our analysis reveals

a volatility paradox: Forcing the stablecoin issuer to hold reserves in low-risk assets can make the

stablecoin more volatile because the issuer endogenously responds to reduce its reserves.

Moreover, we extend our model by allowing the stablecoin issuer to profit from users’ transaction

data. When data becomes a productive capital, its marginal q distorts the stablecoin issuer’s

decisions of reserve management. The issuer aggressively draws down its reserves to subsidize

users’ data-generating activities rather than preserving reserves for stablecoin management. The

data acquisition incentive leads to a more volatile price of the stablecoin. While data privacy and

stablecoins have been treated as two separate areas, both under heated debate among regulators,

our analysis reveals an unintended consequence of privacy regulation on stablecoins: Limiting

platforms’ usage of user-generated data reduces the price volatility of their stablecoins.

The stablecoin issuer’s reserve management is reminiscent of dynamic corporate cash manage-

5The banking model of Klimenko, Pfeil, Rochet, and Nicolo (2016) generates ergodic instability under regulations
unlike the laissez-faire economy in Brunnermeier and Sannikov (2014) and our paper. The commonality is that
the financial-slack variable, which drives the equilibrium dynamics, can be trapped in a certain region by a large
probability over the long run. The continuous-time approach allows a complete characterization of equilibrium
dynamics. Ergodic instability is often ignored by the traditional approach of log-linearization near the steady state.
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ment (Riddick and Whited, 2009; Bolton, Chen, and Wang, 2011; Décamps, Mariotti, Rochet, and

Villeneuve, 2011; Hugonnier, Malamud, and Morellec, 2015; He and Kondor, 2016; Gao, Whited,

and Zhang, 2020), but different from a traditional firm, the stablecoin issuer can depreciate its lia-

bilities (outstanding stablecoins) through debasement, akin to a country monetizing debts through

inflation. Stablecoins share similarities with contingent convertible bonds (CoCos) that share risk

between equity investors and debt holders (Pennacchi, 2010; Glasserman and Nouri, 2012, 2016;

Chen, Glasserman, Nouri, and Pelger, 2017; Pennacchi and Tchistyi, 2018, 2019). But unlike Co-

Cos, risk sharing is done through debasement rather than converting stablecoins into the issuer’s

equity, and debasement is under the discretion of the issuer rather than pre-specified trigger events.6

Next, we provide more details on the model setup and our main results. In a continuous-time

economy, a digital platform issues stablecoins (“tokens”) to a unit mass of representative users.

Our setup applies to both centralized stablecoin issuers, such as Tether or Circle, and decentralized

autonomous organizations (DAO), such as MakerDAO, that are governed by prescribed internet

protocols.7 A user’s token holdings deliver a flow utility that captures the transactional benefits.

The network effect of tokens as means of payment is modelled by embedding the aggregate holdings

in individuals’ flow utility (Cong, Li, and Wang, 2021).8 Following Moreira and Savov (2017), we

assume that users’ demand for tokens declines in the volatility of token price. Such safety preference

is motivated by the link between information sensitivity and asset illiquidity.9

Users can trade tokens for numeraire goods (“dollars”) at an endogenous price (the exchange

rate) without frictions. The issuer (i.e., the platform) can trade tokens against its reserves, di-

rectly influencing the token price. Thus, the token price is at any time optimal from the issuer’s

perspective. On the issuer’s balance sheet, the liability side has tokens outstanding and equity.

On the asset side, the platform holds reserves that earn an interest rate, grow with token issuance

and user fees, and load on Brownian shocks. The shocks capture operational risk and unexpected

fluctuations of reserve value. Importantly, our model also allows for double-collateralization that

is behind some stablecoin initiatives in practice (e.g., DAI). Under double-collateralization, users

are required to post collateral to back their stablecoin holdings subject to margin requirement and

6Our model is also related to the continuous-time models of exchange rate determination in small-open economies
(e.g., Penati and Pennacchi, 1989) but differs in our endogenous process of money supply.

7This is in line with the current focus of policy makers on a technology-neutral approach that emphasizes economic
insights over technological aspects of implementation ECB Crypto-Assets Task Force (2019).

8This money-in-utility approach follows the macroeconomics literature (Ljungqvist and Sargent, 2004). The
modelling of network effect is in the tradition of social interaction (Glaeser, Sacerdote, and Scheinkman, 1996).

9To be liquid and circulate as a transaction medium, a security must be designed in a way that deters private
information acquisition (e.g., via a safe payoff) and thus avoids asymmetric information between trade counterparties
(Gorton and Pennacchi, 1990; DeMarzo and Duffie, 1999; Dang, Gorton, Holmström, and Ordoñez, 2014).
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the issuer’s reserves are drawn upon to cover shortfalls in users’ collateral value. Then, the reserve

shocks originate from the fluctuation of users’ collateral value, and the size of the shock can be

controlled through the margin requirement on the users.

The dollar value of excess reserves (i.e., the platform’s equity on the balance sheet or the

difference between reserves and the dollar value of stablecoins outstanding) is the state variable

in the issuer’s dynamic optimization program.10 The value function that solves the Hamilton-

Jacobi-Bellman (HJB) equation delivers a state-contingent valuation of the stablecoin issuer’s equity

shares (i.e., what practitioners call the governance tokens). The platform pays out dividends to

its shareholders when it holds sufficient reserves as risk buffer, which implies an endogenous upper

bound on excess reserves. The issuer accumulates reserves through the interests earned on reserves,

fees charged to users, and trading profits from open market operations. We specify the lower

(liquidation) bound on the equity (excess reserves) to be zero to focus on over-collateralization.

Our focus on fully collateralized stablecoins is motivated by the recent regulatory proposals and

bank run events that have cast doubts on the viability of under-collateralized stablecoins.11

In spite of over-collateralization, the stablecoin issuer cannot always sustain one-to-one convert-

ibility between tokens and dollars. To avoid costly liquidation, the platform opts for debasement

and token price becomes volatile whenever its equity (excess reserves) fall below a threshold. De-

basement and volatility trigger a vicious cycle as the depressed token demand leads to a reduction

in fee revenues, which causes a slow recovery of equity (excess reserves) and persistent volatility.

However, debasement is a valuable option, as it allows the platform to share risk with users. When

negative shocks decrease reserves, debasement causes token liabilities to shrink and stabilizes equity.

Above the debasement threshold, the platform sustains one-to-one convertibility and token price is

stable. Then a strong token demand allows the platform to collect revenues to grow reserves, which

further strengthens the peg to dollar. This virtuous cycle implies persistent expansion of platform

reserves until it reaches the optimal payout boundary. The stationary distribution of equity (excess

reserves) is thus bimodal with two peaks near zero and the payout boundary, respectively.

Importantly, we show that token price debasement occurs even when the platform can replenish

10A stablecoin issuer has stablecoin liabilities and equity and is different from a money market fund (only equity).
11In December 2020, three U.S. house representatives proposed the Stablecoin Tethering and Bank Licensing

Enforcement (STABLE) Act that emphasized full collateralization. On June 16, 2021, a bank run happened to
IRON, a partially collateralized token soft pegged to the U.S. dollar. This was the first large-scale bank run in
the cryptocurrency market, and major cryptocurrency investors were calling for regulators’ attention (Tiwari, 2021).
Different from Routledge and Zetlin-Jones (2021) who study speculative attacks on under-collateralized stablecoins
and coordination failure (Morris and Shin, 1998; Goldstein and Pauzner, 2005), we characterize a novel mechanism of
risk amplification and show that in line with evidence (Lyons and Viswanath-Natraj, 2020; Kozhan and Viswanath-
Natraj, 2021), even over-collateralized stablecoins can debase when the issuer’s reserves fall significantly.
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its reserves by issuing new equity subject to issuance costs similar to Riddick and Whited (2009):

Following negative shocks, the platform first debases its token and only relies on equity financing

as a last resort when the equity (excess reserves) fall to zero.

We evaluate three types of stablecoin regulations. The first is a standard capital requirement

that stipulates the minimal degree of excess reserves. It reduces token price volatility and increases

welfare but debasement still happens in equilibrium. As long as the threat of liquidation (or costly

equity issuance) exists, whether it is due to reserve depletion or the violation of regulation, it is

optimal for the stablecoin issuer and users to share risk through debasement. The second type

of regulation, which enforces a fixed token price, only hurts welfare by destroying the economic

surplus from risk sharing. In practice, it is difficult to commit against debasement, but even if such

commitment is possible, our results show that it would not be optimal.12

The third type of regulation restricts the riskiness of reserve assets. A volatility paradox

emerges: When reserve assets are riskier, the platform hoards more reserves and token price actu-

ally becomes more stable. Forcing the platform to hold low-risk reserve assets may destabilize token

price as the platform will respond by holding less reserves. As long as the regulation cannot com-

pletely eliminate risk, the volatility paradox is a robust equilibrium feature. In terms of welfare, the

regulatory outcome depends on the risk-return trade-off (i.e., whether riskier reserves deliver higher

expected returns). In sum, capital requirement is the most effective in generating unambiguous

welfare gains and stabilizing token price, but still fails to entirely eliminate debasement.

Stablecoins became the subject of heated debate after Facebook and its partners announced

their own stablecoin, Libra (now “Diem”), in June 2019.13 Leveraging on their existing customer

networks, global platforms are able to rapidly scale the reach of their stablecoins.14 To analyze

the advantages of well-established networks in the stablecoin space, we compare platforms with

different degrees of network effects. A stronger network effect is associated with a lower frequency

of debasement as it allows the platform to extract more fee revenues from users especially when

reserves are running low. Stabilizing token price is in the platform’s interest because low volatility

stimulates users’ token demand and a stronger network effect implies a greater positive externality

12In other words, the system does not feature dynamic inconsistency in the issuer’s choice of debasement. Admit-
tedly, our model may underestimate the value of a perfectly stable token. For example, debasement invites speculation
that can in turn amplify price fluctuation and triggers a vicious cycle (Kondor, 2009; Mayer, 2020).

13The announcement triggered a globally-coordinated response under the umbrella of the G7. From then on, the
G20, the Financial Stability Board (FSB), and central banks around the world have also embarked on efforts to
address the potential risks while harnessing the potential of technological innovation.

14Another example is JPM Coin, a blockchain-based digital coin for fast payment settlement that is being developed
by JP Morgan Chase and was announced in February 2019.
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of one user’s adoption on others. However, the platform does not perfectly internalize the network

externalities, and token price is still more volatile than the social optimum. Specifically, we show

that the optimal capital requirement should be tougher for platforms with stronger network effects.

The enormous amount of transaction data brought by a payment system lures digital platforms

to develop their own stablecoins. Following Parlour, Rajan, and Zhu (2020), we extend our model

to incorporate data as by-product of transactions.15 Data helps the platform to improve its produc-

tivity in locking in users’ attention and stimulating user activities (for example, through targeted

content delivery). When data becomes a productive capital, its marginal q distorts the platform’s

stablecoin management. Specifically, the platform faces a new trade-off between data acquisition

and reserves preservation. The former requires lower fees to stimulate user activities while the

latter calls for higher fees to grow reserves. We show that when data becomes more productive, the

platform cuts fees aggressively and, as a result, token price becomes more volatile and debasement

becomes more likely. Therefore, a paradox exists: Stablecoins built primarily for data acquisi-

tion become increasingly unstable when data becomes more valuable. Our analysis also reveals

an unintended benefit of data privacy regulation that limits platforms’ use of user-generated data.

By making data less productive, privacy regulation tilts the platforms’ incentive towards reserve

preservation rather than data acquisition and therefore stabilizes the platforms’ stablecoins.

2 Background: Crypto Shadow Banking in Decentralized Finance

Blockchain technology supports peer-to-peer transfer of assets on distributed ledgers, potentially

eliminating the need to transact through intermediaries (Raskin and Yermack, 2016; Abadi and

Brunnermeier, 2019; Brainard, 2019). Decentralization avoids sizable intermediation costs (Philip-

pon, 2015). Depending on the blockchain protocols, decentralization can enhance operational re-

silience by eliminating single point of failure while still achieve scalability (John, Rivera, and Saleh,

2020).16 Decentralized finance (“DeFi”) offers blockchain-based alternatives to traditional finan-

15In the broader literature on the economics of data, Veldkamp (2005), Ordoñez (2013), Fajgelbaum, Schaal, and
Taschereau-Dumouchel (2017), and Jones and Tonetti (2020) model data by-product of economic activities.

16Decentralized ledger technology is nascent and faces many challenges. Settlement finality can be compromised
when the nodes of a distributed network disagree (Biais, Bisiere, Bouvard, and Casamatta, 2019; Ebrahimi, Routledge,
and Zetlin-Jones, 2020). Law of one price fails in segmented markets (Makarov and Schoar, 2020). Proof-of-work
protocols face limits on adoption Hinzen, John, and Saleh (2019), system security risks (Budish, 2018; Pagnotta, 2021),
and requires energy consumption that crowds out other users (Benetton, Compiani, and Morse, 2021). Researchers are
active in studying alternative protocols, such as proof-of-stake (e.g., Saleh, 2020; Fanti, Kogan, and Viswanath, 2019;
John, Rivera, and Saleh, 2021). The cost of decentralization also depends on the market structure of decentralized
ledger keepers (Huberman, Leshno, and Moallemi, 2019; Pagnotta and Buraschi, 2018; Easley, O’Hara, and Basu,
2019; Cong, He, and Li, 2020; John, Rivera, and Saleh, 2020; Lehar and Parlour, 2020; Prat and Walter, 2021).
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cial services, such as banking, brokerage, and exchanges (Lehar and Parlour, 2021). It also uses

smart contracts with coded enforcement via programmable money (Tinn, 2017; Cong and He, 2019;

Goldstein, Gupta, and Sverchkov, 2019), a concept independent from blockchain (Halaburda, 2018).

This emerging financial architecture requires blockchain-based currencies. A viable means of

payment should maintain a stable value at least within the settlement period (i.e., time needed

for generating decentralized consensus on transactions (Chiu and Koeppl, 2017)). However, most

cryptocurrencies are highly volatile (Hu, Parlour, and Rajan, 2019; Stulz, 2019; Liu and Tsyvinski,

2020). They are platform-specific currencies (Catalini and Gans, 2018; Sockin and Xiong, 2018; Li

and Mann, 2020; Bakos and Halaburda, 2019; Gryglewicz, Mayer, and Morellec, 2020; Cong, Li, and

Wang, 2021; Danos, Marcassa, Oliva, and Prat, 2021) whose values are unbacked and fluctuate with

the supply and demand dynamics native to the hosting platforms (Cong, Li, and Wang, 2019).17

Stablecoins are advertised as blockchain-based copies of fiat currencies. The total market value

is $130 billion dollars as of November 2021 (up from $ 28 billion in January). Stablecoins are heavily

used in DeFi activities (Saengchote, 2021), and in May 2021 alone, $766 billion worth of stablecoins

were transferred.18 The issuer can be a corporate entity or a consortium (e.g., a consortium led

by Facebook, the developer of Diem).19 It can also be a decentralized autonomous organization

(DAO), an internet protocol whose rules may be updated upon users’ consensus on the blockchain

(e.g., MakerDAO, the issuer of DAI).20 A stablecoin is backed by the issuer’s reserve assets. The

price stability is sustained by the issuer conducting open market operations (i.e., trading reserves

against stablecoins) and meeting redemption requests (Bullmann, Klemm, and Pinna, 2019). The

blockchain-based distributed ledger records the ownership and transfer of stablecoins but verifying

reserves still relies on traditional auditing (Calle and Zalles, 2019).

Stablecoins can potentially be the link between DeFi and the real economy. In a statement in

November 2021, U.S. Treasury Secretary Janet Yellen commented on stablecoins: “Stablecoins that

are well-designed and subject to appropriate oversight have the potential to support beneficial pay-

ments options.”21 The volatility of the first-generation cryptocurrencies, such as Bitcoin and Ether,

17Unbacked cryptocurrencies are exposed to platform-specific risks (Liu, Sheng, and Wang, 2020; Shams, 2020),
issuers’ moral hazard (Chod and Lyandres, 2019; Davydiuk, Gupta, and Rosen, 2019; Gan, Tsoukalas, and Netessine,
2021; Garratt and Van Oordt, 2019), and self-fulfilling and speculative beliefs (Garratt and Wallace, 2018; Benetton
and Compiani, 2020). Their returns exhibit a factor structure like other risky assets (Liu, Tsyvinski, and Wu, 2019).

18See Rajpal and Marshall (2021), Op-ed: Stablecoin is the future of virtual payments. How wise regulation can
foster its growth, CNBC July 13, 2021.

19Central banks digital currencies are alternatives to privately issued stablecoins (Bech and Garratt, 2017).
20It is technologically feasible to hard-code certain aspects of a protocol. Kim and Zetlin-Jones (2019) propose an

ethical framework for developers to determine which aspects should be immutable and which should not.
21See Livni and Lipton (2021), Regulators Ask Congress to Create New Rules for Cryptocurrencies, The New York
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limits their adoption in real-world transactions. Stablecoins, designed to be have stable exchange

rates with respect to the reference fiat currencies, have the potential to mediate blockchain-based

transactions of goods, services, and real assets.

Stablecoins also play important rules in the cryptocurrency community. Traders’ activities

heavily involve rebalancing between stablecoins and more volatile cryptocurrencies. Cryptocurrency

has become an emerging asset class with the total market capitalization around $1.5 trillion dollars

(with roughly $700 billion in Bitcoin).22 It is estimated that 50 to 60% of Bitcoin trading volume

is against USDT, the stablecoin issued by Tether (J.P. Morgan Global Research, 2021).

In spite of the importance of stablecoins, there does not exist clear legal and regulatory frame-

works. Unlike depository institutions, a stablecoin issuer does not have any obligation to guarantee

the quality of reserve assets or maintain a fixed token price. Many are concerned that a major

stablecoin “breaks the buck” may trigger financial turmoil beyond the cryptocurrency community

(Massad, 2021; Kozhan and Viswanath-Natraj, 2021). The creation of stablecoins is essentially a

new form of shadow banking—unregulated safety transformation—with its distinct features.23

The reserve assets are risky. Major stablecoin issuers hold commercial papers withour disclosure

on the identities of commercial paper issuers. The default of China Evergrande Group disrupted

cryptocurrency markets precisely due to the concern over Tether’s exposure to the Chinese real

estate sector.24 Tether is the issuer of USDT, the largest stablecoin by market capitalization.25

Panel A of Figure 1 illustrates stablecoin creation with over-collateralization, a common practice

among stablecoin issuers (Bullmann, Klemm, and Pinna, 2019). The issuer’s excess reserves buffers

the fluctuation of reserve value. The equity shares are called governance tokens (or “secondary

units”) that carry the rights to vote on changes of protocols (i.e., control rights) and pay out

cash flows generated by fees charged on the stablecoin users. Governance tokens can be issued to

replenish reserves, just as traditional corporations can raise cash by issuing equity. A stablecoin

issuer essentially takes a leveraged bet on the value of reserve assets. The issuer can increase its

leverage by issuing new stablecoins to finance the purchase of reserve assets, just as banks finance

Times November 1, 2021.
22Nearly half of millennial millionaires have at least 25% of their wealth in cryptocurrencies (CNBC Survey).
23A stable value is essential for a transaction medium because it reduces asymmetric information between transac-

tion counterparties (Gorton and Pennacchi, 1990; DeMarzo and Duffie, 1999; Dang, Gorton, Holmström, and Ordoñez,
2014). Without informational frictions, stability may not be necessary (Schilling and Uhlig, 2019).

24See Lewitinn (2021), Tether, Bitcoin and Chinese Commercial Paper at Scale: A look at the leading stablecoin’s
market cap and China’s real estate industry., CoinDesk Insights November 12, 2021.

25According to De and Hochstein (2021), USDT is backed by dollar cash, cash equivalents, and commercial papers
(75.85%), secured loans (12.55%), corporate bonds, funds, and precious metals (9.96%), and other investments
including digital tokens (1.64%).
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Figure 1: Crypto Shadow Banking. This illustrates the two structures of stablecoins. In Panel A, a platform
issues stablecoins backed by its reserves. The excess reserves belong to the holders of governance tokens who have
the control right (i.e., the control over platform policies). When reserves are invested in risky assets, a potential loss
is absorbed by the equity position. As long as the stablecoins are over-collateralized, their value is intact. In Panel
B, stablecoins are backed by both the user’s collateral and the platform’s reserves. When the collateral value declines
and the user fails to meet the margin requirement, the platform liquidates the collateral and uses the proceeds (and
its own reserves) to buy back stablecoins in the secondary market.

their lending and security trading with newly issued deposits (i.e., inside money creation (Tobin,

1963; Bianchi and Bigio, 2014; Piazzesi and Schneider, 2016; Faure and Gersbach, 2017; Donaldson,

Piacentino, and Thakor, 2018; Parlour, Rajan, and Walden, 2020)). Unlike banks that commit to

redeem deposits at par, the stablecoin issuer can debase the stablecoins.

Panel B of Figure 1 illustrates a more complex structure that is similar to the one adopted

by MakerDAO, the issuer of DAI and an early decentralized autonomous organizations.26 A user

pledges her holdings of cryptocurrencies and other assets as collateral for newly created stablecoins,

subject to a haircut (margin requirement). The user may transfer the stablecoins, which then

circulate in the market, but she must maintain the margin requirement. If the collateral value

declines and the user cannot maintain the margin, she loses her collateral to the stablecoin issuer,

who then liquidates the collateral and uses the proceeds to buy back (and burn) the stablecoins

created for this user.27 If the liquidation of collateral does not generate sufficient proceeds, the

26Decentralized autonomous organizations (DAOs) are organizations represented by rules encoded as computer
programs and controlled by the organization members through various voting mechanisms on blockchains.

27Burning is to send the stablecoins to an irretrievable digital address
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stablecoin issuer’s reserves supplement the expense of stablecoin buy-back.28

The structure in Panel B of Figure 1 resembles shadow banking: A bank sets up a conduit

(special purpose vehicle) that tranches risky investments into debt and equity and extends a guar-

antee to the debt investors (Acharya, Schnabl, and Suarez, 2013). The stablecoin is like the debt

(senior) tranche of the conduit. The stablecoin issuer and the user correspond, respectively, to the

bank and the conduit. The issuer’s commitment to buy back stablecoins potentially with her own

reserves is analogous to the bank’s guarantee. Despite double collateralization, the stablecoin may

still break the buck, consistent the findings of Kozhan and Viswanath-Natraj (2021) on a positive

relationship between collateral risk and the price volatility of stablecoin DAI.29

We set up our model in the next section following the structure in Panel A of Figure 1 and

present the solution in Section 4. Section 5 provides an analysis of several regulatory proposals. In

Section 6, we extend our model to incorporate double collateralization in Panel B of Figure 1 and

analyze the optimal margin requirement. Section 7 focuses on stablecoins issued by large digital

platforms that have strong user network effects and can profit from users’ data.

3 A Model of Stablecoins

Consider a continuous-time economy where a continuum of representative agents (“users”) of unit

measure demand stablecoins (“tokens”) that are issued by a platform. The generic consumption

goods (“dollars”) are the numeraire in this economy, and we take as exogenous a prevailing interest

rate r. Let Pt denote the token price in units of dollars. Users trade tokens with the platform and

amongst themselves at the market price Pt per unit without frictions. The platform can influence

the token price Pt by trading tokens against its reserves in the market. In equilibrium, the dollar

price of token has a law of motion which the atomic users take as given:

dPt
Pt

= µPt dt+ σPt dZt , (1)

where the standard Brownian shock, dZt, will be introduced below as a shock to the platform’s

reserves. We will show how µPt and σPt in equilibrium depend on the platform’s optimal strategies.

Next, we first introduce users and then set up the platform’s problem.

28While the repurchase (and burn) of stablecoins is recorded on the blockchain, the liquidation of non-
cryptocurrency collateral and reserves happens off-chain and still requires the traditional financial and legal systems.

29The capital structure of a stablecoin issuer (stablecoin liabilities and equity) is different from that of a money
market fund (full equity). Money market funds have different fragility mechanisms (Kacperczyk and Schnabl, 2013;
Parlatore, 2016; Schmidt, Timmermann, and Wermers, 2016; La Spada, 2018; Li, Li, Macchiavelli, and Zhou, 2021).
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Users. There is a unit mass of risk-neutral users with time discount rate r. We use ui,t (i ∈ [0, 1])

to denote the dollar value of user i’s holdings of tokens, so user i holds ki,t = ui,t/Pt units of

tokens. The aggregate dollar value of token holdings is Nt ≡
∫
i∈[0, 1] ui,tdt. Users hold stablecoins

for transactions and as a store of value. We model the transactional benefit of holding stablecoins

in a reduced form. Specifically, user i derives a flow utility (convenience yield) from token holdings:

1

β
Nα
t u

β
i,tA

(1−α−β)dt− ηui,t|σPt |dt , (2)

where α, β ∈ (0, 1) with α + β < 1, A > 0, and η > 0. We model the utility from holding

means of payment following the classic models of monetary economics (e.g., Baumol, 1952; Tobin,

1956; Feenstra, 1986; Freeman and Kydland, 2000) and related empirical studies (e.g., Poterba

and Rotemberg, 1986; Lucas and Nicolini, 2015; Nagel, 2016). In this literature, agents derive

utility from the real value of holdings, i.e., ui,t.
30 Following Rochet and Tirole (2003), we introduce

network effect via Nα
t . Cong, Li, and Wang (2021) provide a microfoundation of this type of

setup where each user’s utility is higher when tokens are more widely adopted.31 Later we conduct

comparative statics analysis on α to show how network effects affect token price stability. The

quality of the payment system is captured by parameter A which we will endogenize in Section 7.2.

We define transactional utility from an ex ante perspective and the first term in (2) can be viewed

as the expected transaction benefits in dt. We do not model the ex post circulation of tokens in line

with the aforementioned literature on money-in-utility and cash-in-advance constraint.

The user’s preference for stability is captured by the parameter η (> 0), and is defined on the

absolute value of σPt to capture the fact that users are averse to token price fluctuation no matter

whether the price moves with (σPt > 0) or against (σPt < 0) the platform’s reserve shock dZt. We

motivate such preference for stability following Moreira and Savov (2017): to be liquid and circulate

as a transaction medium, a security must be designed in a way that deters private information

acquisition and thus avoids asymmetric information between trade counterparties (Gorton and

Pennacchi, 1990; DeMarzo and Duffie, 1999; Dang, Gorton, Holmström, and Ordoñez, 2014).32

One may interpret the flow utility given by (2) as the convenience yield relative to its reference fiat

30We refer readers to the textbook treatments (e.g., Gaĺı, 2015; Ljungqvist and Sargent, 2004; Walsh, 2003). For
the nominal value (i.e., ki,t) to affects agents’ decisions, additional frictions, such as nominal illusion (e.g., Shafir,
Diamond, and Tversky, 1997) or sticky prices (e.g., Christiano, Eichenbaum, and Evans, 2005), have to be introduced.

31Specifically, when there are more people use tokens, it becomes easier to find a transaction counterparty that
accepts tokens, so token holders expect more token usage of means of payment.

32The disutility from token volatility can also be motivated by risk-averse preference or users’ aversion to exchange-
rate shocks that cause losses of net worth when assets and liabilities are denominated in different currencies (tokens
and dollars) (Doepke and Schneider, 2017; Gopinath, Boz, Casas, Dı́ez, Gourinchas, and Plagborg-Møller, 2020).
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currency due to functionalities such as relaxing collateral constraints in smart contracts.33

User i pays a proportional fee on her token holdings, ui,tftdt, where ft is set by the platform.

When ft is negative, users earn subsidies on their token holdings. Note that as long as the money

(token) velocity is constant within the small time interval (dt), transaction volume is proportional

to token holdings, Nt. Therefore, an alternative interpretation of ft is transaction fee. There exists

a technical upper bound on the volume of transactions that the platform can handle per unit of

time (Hinzen, John, and Saleh, 2019). Without loss of generality, we model the bound as follows:

Nt ≤ N . (3)

Let Ri,t denote user i’s (undiscounted) cumulative payoff from platform activities. The instan-

taneous payoff depends on user i’s choice of ui,t ≥ 0 and is given by

dRit ≡
(

1

β
Nα
t u

β
i,tA

(1−α−β) − ηui,t|σPt |
)
dt+ ui,t

(dPt
Pt
− rdt− ftdt

)
, (4)

where the first term is the flow utility (2) and the second term includes the return from token price

change net of forgone interests r and fees ft. A representative user i chooses ui,t ≥ 0 to maximize

max
ui,t≥0

Et [dRit] = max
ui,t

[
1

β
Nα
t u

β
i,tA

(1−α−β)dt+ ui,t

(
µPt − r − ft − η|σPt |

)
dt

]
. (5)

Note that r is essentially the users’ (opportunity) cost of capital as in Jorgenson (1963).34

The Platform. Let St denote the total units of tokens outstanding (the token supply). The

token market clearing condition is given by

St =

∫
i∈[0,1]

ui,t
Pt
di, (6)

or equivalently, in the numeraire (dollar) value:

StPt = Nt =

∫
i∈[0,1]

ui,tdi. (7)

33Network effects in this interpretation reflect the fact that wider adoption implies more contracting opportunities.
34For agents with infinite intertemporal elasticity of substitution, we do not need to explicitly model the dynamic

consumption-savings trade-off and portfolio allocation of savings because the marginal investment in any asset (in-
cluding tokens) should deliver an expected return r, which is also equal to the marginal return on total savings.
Therefore, a user simply maximizes the excess return on token holdings when choosing ui,t. As will be shown later,
the first order condition of the problem given by (5) equates the marginal benefit of ui,t to r.

12



The platform chooses the fees and controls the token price, Pt, by adjusting the token supply. This

is akin to central banks using open market operations to intervene in the foreign exchange markets

(e.g., Calvo and Reinhart, 2002). When the platform issues more tokens (dSt > 0), it collects dollar

revenues as users buy tokens with dollars. When the platform repurchases and burns tokens from

users (dSt < 0), it spends dollars to buy tokens from users.35

Let Mt denote the dollar value of the platform’s reserve assets. For simplicity, we do not

microfound the composition of reserve assets and specify the following law of motion 36

dMt = rMtdt+ (Pt + dPt)dSt +Ntftdt+NtσdZt − dDivt. (8)

The first term is the interests earned on the reserves balance as r is the prevailing interest rate. The

second term is the revenues (losses) from issuing (buying back) tokens the secondary market. From

t to t+dt, the quantity adjustment dSt is multiplied by the end-of-period price Pt+dt = Pt+dPt. The

third term is the fee. In the fourth term, Zt is a standard Brownian motion, and its increment, dZt,

captures the shocks to the reserve holdings, which can stem from unexpected operating expenses or

risks in the reserve assets. This shock is the only source of uncertainty in the model, and it scales

with dollar market capitalization of tokens, StPt = Nt.
37 Let Divt denote the cumulative dividend

process. The platform’s reserves decrease when the platform pays its owners dividends, dDivt. In

the baseline, we assume dDivt ≥ 0, reflecting that platform shareholders have limited liability and

it is not possible to issue new equity. In Section 4.2, we extend our model to incorporate (costly)

equity issuance (i.e., dDivt < 0 (Hennessy and Whited, 2005, 2007)).

The platform maximizes the expected discounted value of dividend payouts to its owners:

V0 ≡ max
{ft,dSt, dDivt}

E
[∫ ∞

0
e−ρtdDivt

]
subject to (8) and dDivt ≥ 0. (9)

We assume that the platform’s shareholders apply a discount rate ρ which exceeds the interest rate

r, that is, ρ > r. The assumption that shareholders apply a higher discount rate than the interest

rate on reserves is standard in dynamic liquidity management models (e.g., Riddick and Whited,

2009; Décamps, Mariotti, Rochet, and Villeneuve, 2011) and made to rule out a degenerate solution

35In practice, token burning is to send tokens to irretrievable digital addresses.
36In Appendix B.3, we consider a more general law of motion of Mt. Section 5.3 studies the implications of

regulating the riskiness of stablecoin reserve assets.
37The assumption that reserve shocks scale with Nt is inconsequential for our main findings. Appendix B.3 considers

an alternative specification for the dynamics dMt in which reserve shocks scale with the level of reserves Mt rather
than with Nt. We show that the results remain qualitatively unchanged under this alternative specification.
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in which the firm forever accumulates financial slack and never pays out dividends.38

Liquidation. We assume that the platform is liquidated and its owners’ value falls permanently

to zero when its equity (i.e., the excess reserves, Mt − StPt) becomes negative. As we show be-

low, the platform optimally maintains Mt ≥ StPt to avoid liquidation so that the stablecoin is

over-collateralized in equilibrium.39 This distinguishes our analysis from the well-studied mech-

anism of bank runs that applies to under-collateralized stablecoins with a negative equity of the

issuer, i.e., Mt < StPt (Routledge and Zetlin-Jones, 2021).40 The case of over-collateralization is

likely to be increasingly relevant under recent regulatory proposals and dramatic failure of under-

collateralized stablecoins.41 The conventional wisdom is that debasement will not happen under

over-collateralization (Brainard, 2019; G7 Working Group on Stablecoins, 2019; ECB Crypto-Assets

Task Force, 2019; Massad, 2021; Gorton and Zhang, 2021). Our analysis below challenges this no-

tion. In Appendix B.6, we present a model that allows under-collateralization (i.e., negative equity)

and show that the dynamics are similar in the no-run equilibrium. In fact, as long as there exists

a lower (liquidation) bound on equity (i.e., excess reserves), our qualitative results carry through.

4 Equilibrium

In this section, we characterize the analytical properties of the dynamic equilibrium and, to sharpen

the economic intuition, we also provide graphical illustrations based on the numerical solutions.

4.1 Managing Stablecoin: Optimal Strategies

User Optimization. A representative user i solves the problem in (5) with the following first-

order condition for ui,t

Nα
t u

β−1
i,t A(1−α−β) + µPt − ft − η|σPt | = r , (10)

38The wedge, ρ− r, can be microfounded with an exogenous Poisson-arriving liquidation with intensity ρ− r. The
literature on agency cost of cash holdings also provides a rationale for why the return on liquidity holdings is below
shareholders’ discount rate (Nikolov and Whited, 2014; Nikolov, Schmid, and Steri, 2019).

39Our model features (small) diffusive shocks, so the platform can maintain Mt ≥ StPt via continuous adjustments.
If we do not assume liquidation upon Mt ≤ StPt, there can be under-collateralization and equilibrium multiplicity.
On one equilibrium path, users never withdraw en masse and continuously trade tokens at the dynamic price Pt. The
other equilibrium paths feature runs (related to the dynamics in Donaldson and Piacentino (2020)). In the no-run
equilibrium our analysis carries through as long as there exists a liquidation lower bound on Ct.

40Routledge and Zetlin-Jones (2021) study the speculative attacks on under-collateralized stablecoins that are akin
to those on currencies (Morris and Shin, 1998; Goldstein, Ozdenoren, and Yuan, 2011).

41In December 2020, the U.S. house representatives proposed the Stablecoin Tethering and Bank Licensing En-
forcement (STABLE) Act that emphasized full collateralization. On June 16, 2021, a bank run happened to IRON,
a partially collateralized token. This was the first large-scale run in the cryptocurrency market (Tiwari, 2021).
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so total utility from the marginal token holdings is equal to r, the user’s discount rate and the

prevailing interest rate which is users’ (opportunity) cost of capital. The solution is

ui,t =

(
Nα
t A

(1−α−β)

r + ft − µPt + η|σPt |

) 1
1−β

. (11)

Users’ choices exhibit strategic complementarity as ui,t increases in the aggregate value Nt.
42 In

equilibrium, Nt = ui,t under user homogeneity, which, through (11), implies

Nt =
A(

r + ft − µPt + η|σPt |
) 1

1−ξ
. (12)

To simplify the notations, we define ξ ≡ α + β (< 1). Aggregate token demand decreases in the

fees, ft, and depends on the token price dynamics, which the platform controls. This is the solution

within the system throughput (i.e., Nt < N); otherwise, we have ui,t = Nt = N . Note that Nt

quantifies token usage and can be interpreted as transaction volume.

Platform Optimization. To solve for the platform’s optimal strategies, we first note that, given

the token price dynamics (i.e., µPt and σPt ), the platform can directly set Nt through the fees ft.

Rearranging (12), we can back out the fees implied by the platform’s choice of Nt:

ft =

(
A

Nt

)1−ξ
− r + µPt − η|σPt | . (13)

Using (13), we substitute out ft in the law of motion of reserves (8) and obtain

dMt − (Pt + dPt)dSt = rMtdt+N ξ
t A

1−ξdt− rNtdt+Nt

(
µPt − η|σPt |

)
dt+NtσdZt − dDivt . (14)

Next, we show the state variable for the platform’s dynamic optimization is the excess reserves,

Ct ≡Mt − StPt . (15)

42There is a trivial equilibrium where ui,t = Nt = 0. We focus on the Pareto-dominant equilibrium where Nt > 0.
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To derive the law of motion of Ct, we first note that

dCt = dMt − d(StPt) = dMt − (Pt + dPt)dSt − StdPt (16)

= dMt − (Pt + dPt)dSt −Nt

(
µPt dt+ σPt dZt

)
.

The second equality uses d(StPt) = dStPt + StdPt + dStdPt (by Itô’s lemma) and the last equality

uses (1) and Nt = StPt. From a balance-sheet perspective, the reserves, Mt, are the platform’s

assets and the outstanding tokens, StPt, are the liabilities. The excess reserves constitute the

(book) equity. Thus, equation (16) is essentially the differential form of the balance-sheet identity.

Using (14) to substitute out dMt − (Pt + dPt)dSt in (16), we obtain the following law of motion:

dCt =
(
rCt +N ξ

t A
1−ξ −Ntη|σPt |

)
dt+Nt(σ − σPt )dZt − dDivt , (17)

with drift µC,t ≡ rCt + N ξ
t A

1−ξ − Ntη|σPt | and diffusion σC,t ≡ Nt(σ − σPt ). Note that Ntµ
P
t

disappears. As shown in (14), the platform receives more fee revenues (see (13)) when users expect

tokens to appreciate (Ntµ
P
t ), but such revenues do not increase the platform’s excess reserves as

they are cancelled out by the appreciation of token liabilities. After netting out the two forces, the

drift term, rCt +N ξ
t A

1−ξ −Ntη|σPt |, is the expected appreciation of the platform’s excess reserves.

The platform controls the law of motion of Ct through dividend payouts, dDivt, aggregate token

demand, Nt (or equivalently, fees ft), and token price volatility σPt . We will show that once we solve

for these optimal control variables, the equilibrium processes of token supply, St, and token price,

Pt, can be obtained. We characterize a Markov equilibrium with the platform’s excess reserves,

Ct, as the only state variable. We solve for the platform’s control variables, dDivt, σ
P
t , and Nt, as

functions of Ct, and thereby, show that (17) is an autonomous law of motion of Ct.

The platform owners’ value function at time t is given by

Vt = V (Ct) = max
{N, σP , Div}

E
[∫ ∞

s=t
e−ρ(s−t)dDivs

]
. (18)

The platform pays dividends when the marginal value of excess reserves is equal to one, i.e., one

dollar has the same value either held within the platform or paid out,

V ′
(
C
)

= 1 . (19)
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The optimality of payouts at C also requires the following super-contact condition (Dumas, 1991),

V ′′
(
C
)

= 0 . (20)

The next proposition states that the value function is concave. The declining marginal value of

excess reserves implies that C in (19) is an endogenous upper bound of the state variable Ct. At

any Ct ∈
(
0, C

)
, the platform does not pay dividends to its owners because the marginal value of

excess reserves, V ′
(
C
)
, is greater than one, i.e., the owners’ value of dividend.

Proposition 1 (Value Function and Optimal Payout). There exists C > 0 such that Ct ≤ C.

For Ct < C, the value function is strictly concave, and V ′ (Ct) > 1. At Ct = C, V ′
(
C
)

= 1 and

the platform pays dividends when dCt > 0 so that dividend payments cause Ct to reflect at C.43

Before characterizing the solution as Ct approaches zero (the lower boundary), we note that

max
{N∈[0,N ]}

{
N ξA1−ξ − ηNσ

}
> 0 , (21)

because N ξA1−ξ − ηNσ = 0 at N = 0 and, under ξ = α + β < 1 as previous stated, the first

derivative goes to infinity as N approaches zero, (i.e., lim
N→0

ξ
(
A
N

)1−ξ − ησ = +∞).

As Ct approaches zero, the platform can only avoid liquidation by reducing the diffusion of Ct

(i.e., the shock exposure σC(Ct) = Nt(σ − σPt )) to zero, which requires

lim
C→0+

σP (C) = σ , (22)

and by keeping the drift of Ct (i.e., µC(Ct) = rCt + N ξ
t A

1−ξ − Ntη|σPt |) non-negative, which is

already guaranteed by (21) under (22). It is optimal to do so and avoid liquidation because, as we

show below, the value of platform as an ongoing concern is positive. In the region C ∈
(
0, C

)
, we

obtain the following Hamilton-Jacobi-Bellman (HJB) equation (with time subscripts suppressed):

ρV (C) = max
{N∈[0,N ], σP }

{
V ′(C)

(
rC +N ξA1−ξ − ηN |σP |

)
+

1

2
V ′′(C)N2(σ − σP )2

}
. (23)

43When dCt > 0 at Ct = C, the dividend amount is equal to dCt (i.e., exactly the amount needed to avoid Ct > C).
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Figure 2: Value Function. This illustrates the level and first derivative of the platform’s value function. The
red dotted lines in both panels mark C (defined in Proposition 1). The parameters are r = 0.05, ρ = 0.06, σ = 0.1,
N = 5, η = 0.15, α = 0.45, β = 0.05, and A = 0.0025.

Setting σP = σ is always feasible in the HJB equation, which implies:

V (C) ≥ V ′(C)

ρ

(
rC + max

{N∈[0,N ]}

{
N ξA1−ξ − ηNσ

})

≥ 1

ρ

(
max

{N∈[0,N ]}

{
N ξA1−ξ − ηNσ

})
> 0 , (24)

where the second inequality uses C ≥ 0 and V ′(C) ≥ 1 and the last inequality follows (21). By the

continuity of the value function V (C), a strictly positive lower bound of V (C) on
(
0, C

)
implies

that lim
C→0

V (C) > 0. In sum, we have shown that it is optimal for the platform to implement (22)

and thereby avoid liquidation because the value as an ongoing concern is positive as Ct approaches

zero. Finally, (22) implies that, when taking the right-limit on both sides of (23), we obtain

lim
C→0+

V (C)

V ′(C)
=

1

ρ
max

{N∈[0,N ]}

{
N ξA1−ξ − ηNσ

}
=

1

ρ

{
N ξA1−ξ − ηNσ

}
> 0, (25)

where the second equality follows from plugging in the optimal Nt given by

N ≡ lim
C→0+

N(C) = arg maxN∈[0,N ]

{
N ξA1−ξ − ηNσ

}
= A

(
ξ

ησ

) 1
1−ξ
∧N > 0. (26)

The condition (25) serves as another boundary condition for the HJB equation.

As an interim summary, the next proposition summarizes the value function solution as solution

to an ordinary differential equation (ODE) problem with an endogenous boundary C. Figure 2 plots

the numerical solution of value function (Panel A) and the decreasing marginal value of excess
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reserves with the red dotted line marking the payout boundary C.

Proposition 2 (Value Function). The value function, V (C), and the boundary C solve the ODE

(23) on (0, C) subject to the boundary conditions (19), (20), and (25).

Next, we fully characterize the platform’s optimal choices of σPt and Nt as functions of the state

variable, Ct (via the derivatives of V (C)). First, we define the platform’s effective risk aversion:

γ (C) ≡ −V
′′(C)

V ′(C)
. (27)

This definition is analogous to the classic measure of absolute risk aversion of consumers (Arrow,

1965; Pratt, 1964). From Proposition 1, γ (C) ≥ 0 and, in (0, C), γ (C) > 0. The next proposition

states the monotonicity of γ(C) in C and summarizes the optimal σPt = σP (Ct) and N = N(Ct).

Proposition 3 (Risk Aversion, Token Volatility, and Token Usage). The platform’s effective

risk aversion, γ(C), strictly decreases in the level of excess reserve holdings, C. There exists

C̃ ∈
(
0, C

)
such that, at C ∈

(
0, C̃

)
, N(C) = N and σP (C) strictly decreases in C, given by,

σP (C) = σ − η

γ(C)N
∈ (0, σ) , (28)

and at C ∈
[
C̃, C

]
, σP (C) = 0 and N(C) increases in C, given by

N(C) = min

{(
ξA1−ξ

γ(C)σ2

) 1
2−ξ

, N

}
. (29)

When the platform’s reserves are low, i.e., C ∈ (0, C̃), it is the ratio of users’ risk aversion

to the platform’s risk aversion that determines token volatility. Equation (28) shows that, in this

region, when the platform accumulates more reserves and becomes less risk-averse, it absorbs risk

from users by tuning down σPt , and when the platform exhausts its reserves, it off-loads the risk

in its dollar revenues to users.44 The platform and its users engage actively in risk-sharing when

C ∈ (0, C̃). This is illustrated by the numerical solution in Panel A of Figure 3 with C̃ marked by

the dashed line. In Panel B, we show that the platform’s risk aversion declines in C. In this region

of low reserves, transaction volume is pinned to the lowest level given by N in (26).

Once the platform’s reserves surpass the critical threshold C̃, its risk aversion becomes suffi-

ciently low and it optimally absorbs all the risk in its dollar revenues, setting σP (C) to zero which

44Equation (28) implies that the condition (25) is equivalent to γ(C) (or −V ′′(C)) approaching infinity in the limit.
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Figure 3: Token Volatility and Platform Risk Aversion. This figure plots token return volatility σP (C)

in Panel A and the effective risk aversion γ(C) in Panel B. In Panel A, the red dashed line marks C̃ (in Proposition
3). The red dotted lines in both panels mark C (in Proposition 1). The parameterization follows Figure 2.

also implies that in this region µP (C) = 0.45 As a result, transaction volume starts to rise above

the “hibernation level”, N , as illustrated by Panel A of Figure 4. Therefore, reserves are absolutely

essential for stimulating economic activities on a stablecoin platform.

Interestingly, even though the platform shelters its users from risk at any C > C̃, its risk aversion

still shows up in Nt given by (29). As shown in (13), the choice of Nt is implemented through fees.

Therefore, the intuition can be more easily explained when we substitute (29), the optimal Nt, and

the optimal σPt = 0 (as well as µPt = 0) into (13) to solve ft: when
(
ξA1−ξ

γ(C)σ2

) 1
2−ξ

< N ,

f(C) =

(
Aγ(C)σ2

ξ

) 1−ξ
2−ξ
− r , (30)

i.e., the platform charges higher fees to build up its reserves when its precautionary savings motive

is strong (γ(C) is higher); when
(
ξA1−ξ

γ(C)σ2

) 1
2−ξ ≥ N , i.e., C is sufficiently high such that γ(C) falls

below ξA1−ξ

σ2N
2−ξ , the platform de-links the fees from its risk aversion,

f(C) =

(
A

N

)1−ξ
− r . (31)

The platform faces a risk-return trade-off. The fees serve as a compensation for risk exposure

but discourages users from participation. So when the platform’s risk aversion rises, it charges

users more per dollar of transaction at the expense of a smaller volume. When the platform’s risk

45This result arises because we express the equilibrium token price as a function of C, in that Pt = P (Ct). Thus,
token volatility and token returns can be expressed as functions of C too, in that σPt = σP (Ct) and µPt = µP (Ct).

Since σP (C) = 0 for C > C̃, P ′(C) must be zero by Itô’s lemma (i.e., P (C) is constant), implying µP (C) = 0.

20



0 0.5 1 1.5

3

3.5

4

4.5

5

0.5 1 1.5

0

0.2

0.4

0.6

Figure 4: Token Usage and Fees. This figure plots token usage N(C) in Panel A and user fees f(C) in Panel

B. The red dotted line marks C (in Proposition 1). In both panels, the red dashed line marks C̃ (in Proposition 3).
In Panel B, the red solid line marks zero. The parameterization follows Figure 2.

aversion declines, the fees decline while the total total usage increases. Once reserves are sufficiently

high such that γ(C) ≤ ξA1−ξ

σ2N
2−ξ , the fees no longer decline with the platform’s risk aversion, as the

platform has maxed out its transaction capacity, i.e., Nt = N , and it becomes impossible to further

stimulate user participation. Likewise, when the platform’s reserves are below C̃ and σP (C) > 0,

Nt = N , and the fees are given by

f(C) =

(
A

N

)1−ξ

+ µP (C)− ησP (C)− r . (32)

Even though the platform’s risk aversion is high, it no longer sacrifices transaction volume for

higher fees because user participation has already fallen to a very low level.

Panel B of Figure 4 plots the numerical solution of optimal fees that decrease in excess reserves.

Depending on the parameters, fees can actually turn into user subsidies (i.e., fall below zero) when

excess reserves are sufficiently high.46 The next corollary summarizes the results on fees.

Corollary 1 (Optimal Fees). Fees, f(C), decrease in excess reserves, C. At C ∈ (0, C̃), where

C̃ is defined in Proposition 3, fees are given by (32). At C ∈ [C̃, C̃ ′), where C̃ ′ is defined by

γ(C̃ ′) = ξA1−ξ

σ2N
2−ξ , fees are given by (30). At C ∈ [C̃ ′, C), where C is defined in Proposition 1, fees

are given by (31).

When C is below C̃, an interesting implication of (32) is that the platform charges (compensates)

users the expected appreciation (depreciation) of tokens over risk-free rate (i.e., µPt − r shows up

46Specifically, under the particular parameterization, the condition is for fees to turn into subsidies near C is that
A1−ξ

N
1−ξ < r where we use (31) and the fact that µP (C) = 0 for C ∈

(
C̃, C

)
(to be discussed later in this section).

21



in ft). To fully solve the fees, we need to know both γ(Ct) and the function µPt = µP (Ct). In fact,

the platform’s choice of σPt = σP (Ct) already pins down the function of token price, Pt = P (Ct),

so µP (Ct) can be obtained from Itô’s lemma. Next, we solve Pt = P (Ct) from the function σP (Ct).

By Itô’s lemma,

σP (C) =
P ′ (C)

P (C)
N (C)

(
σ − σP (C)

)
, (33)

where N (C)
(
σ − σP (C)

)
is the diffusion of state variable C. Using Proposition 2, we solve the

value function V (C) and obtain γ(C). Using Proposition 3, we obtain the functions σP (C) and

N(C). Plugging σP (C) and N(C) into (33), we obtain a first-order ODE for the function P (C).

To uniquely solve the function P (C), we need to augment the ODE (33) with a boundary

condition. In our model, both the platform and users are not concerned with the level of token

price and only care about the expected token return, µPt , and volatility, σPt . Therefore, we have

the liberty to impose the following boundary condition:

P
(
C
)

= 1 . (34)

i.e., the platform sets an exchange rate of one dollar for one token when Ct reaches C. The next

corollary states the solution of token price as solution to a first-order ODE problem.

Corollary 2 (Solving Equilibrium Token Price). Given the solutions of V (C) (and γ(C))

from Proposition 2 and σP (C) and N(C) from Proposition 3, the equilibrium dollar price of token,

P (C), is a function of C that solves the ODE (33) under the boundary condition (34).

Proposition 3 states that, once C crosses above the critical threshold C̃, σP (C) = µP (C) = 0,

which, by Itô’s lemma, implies that P ′(C) = 0. Therefore, if the platform’s reserves are sufficiently

high, it optimally fixes the dollar price (or the redemption value by no arbitrage) of token at

P (C) = 1. When C falls below C̃, (33) implies that P ′(C) > 0 (because σP (C) ∈ (0, σ) in

Proposition 3) so token price comoves with the platform’s excess reserves.

The endogenous transition between Pt = 1 and Pt < 1 happens as the platform accumulates

or depletes reserves through various activities laid out in (8) (and then in (17)), including the

platform’s issuance of new tokens (dSt > 0), users’ token redemption (dSt < 0), fee revenues, and

shocks to the dollar reserves. The platform’s choice of token price is optimally chosen and thus

credible in the sense that it the platform does not have any incentives to deviate.

Proposition 4 (Endogenous Token Price Regimes). At C ∈ [C̃, C], where C̃ is defined in
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Figure 5: Token Price and Quantity Dynamics. This figure plots the aggregate dollar value of tokens
N(C) in Panel A, token price P (C) in Panel B, and token supply S(C) in Panel C. The red dotted lines in all

panels mark C (defined in Proposition 1). The red dashed lines in all panels mark C̃ (defined in Proposition 3). The
parameterization follows Figure 2.

Proposition 3, the platform maintains token price equal to one, i.e., P (C) = 1. At C ∈ (0, C̃),

token price comoves with the platform’s excess reserves (i.e., P ′(C) > 0).

Proposition 4 states that token price stays at one if and only if the platform holds a sufficiently

large amount of excess reserves (C > C̃). When excess reserves fall below C̃, the platform optimally

debases its tokens. By allowing token price to comove with its excess reserves, the platform off-loads

the risk in its dollar reserves to users and thereby prevents liquidation.

Figure 5 plots the numerical solutions of aggregate token value, N(C) = S(C)P (C) (Panel A),

token price P (C) (Panel B), and the total quantity of tokens S(C) implied by N(C) and P (C)

(Panel C). The dashed line marks C̃. The platform implements the optimal token price through

the manipulation of token supply. When the platform has enough reserves to credibly sustain

Pt = 1 (i.e., C > C̃), token supply comoves with demand so that P (C) is fixed at one. Below

C̃, a decrease of reserves triggers the platform to supply more tokens in exchange for dollars that

replenish reserves. The users respond to token debasement by reducing their token demand to N ,

which in turn reinforces the debasement by reducing the platform’s revenues from open market

operations (i.e., dSt > 0) and fees. The system falls into an instability trap.

In practice, stablecoin platforms often claim commitment to maintain a stable token price and

substantiate their claims by holding reserves that cover token liabilities. However, such a claim is

only credible (incentive-compatible) if the excess reserves are sufficiently high; otherwise, as shown

in Proposition 4, it is in the platform’s interest to debase its tokens.

Using parameters in Figure 2 and numerical solutions, we simulate in Figure 6 a path of Ct

(Panel A), token price Pt (Panel B), token supply St (Panel C), and transaction volume Nt (Panel
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Figure 6: The Instability Trap in Simulation. Using the numerical solutions, we simulate a path of excess
reserves (Panel A), token price (Panel B), token supply (Panel C), and token usage (Panel D). The horizontal axis
records the number of years. The parameterization follows Figure 2.

D). The horizontal axis records the number of years. In the first three years, in spite of the volatility

in Ct, the platform manages to sustain a stable token price, and with the transaction volume (or

token demand) at the full capacity at N , a fixed dollar price of token implies a fixed token supply.

Following a sequence of negative shocks between the third and fourth years, the platform raises

fees. Users respond by reducing their token demand Nt, so the platform reduces token supply,

maintaining Pt = 1. The platform optimally trades off replenishing dollars reserves by raising fees

and using dollar reserves in token buy-back. As more negative shocks hit between the fourth and

ninth years, the platform gives up the peg and off-loads risk to users through the fluctuation of

token price. Users’ token demand hits N , and the platform starts actively expanding token supply

in exchange for dollar revenues. Then following a sequence of positive shocks, the recovery started

in the ninth year, and by the tenth year, the platform finally restores token price back to one.

We demonstrate the long-run dynamics of the model in Figure 7. Panel A plots the stationary

probability density of excess reserves. It shows how much time over the long run the platform spends

in different regions of C. The distribution is bimodal. The concentration of probability mass near

C = 0 is due to the fact that, when the transaction volume (or token demand) gets stuck at the
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Figure 7: Long-Run Dynamics and Stationary Density. We plot stationary probability densities of excess
reserves C (Panel A) and token value P (C) (Panel B) in numerical solutions. The solid black line in Panel A depicts

C = C̃. The parameterization follows Figure 2.

hibernation level N , the platform can only grow out of this region very slowly by accumulating

reserves through fee revenues and proceeds from expanding token supply. The platform also spends

a lot of time near the payout boundary C as this is a stable region where, given a sufficiently high

level of reserve buffer, shocks’ impact is limited. In Panel B, we show that, even though Pt = 1

seems to be the norm, the system exhibits significant risk of token debasement (P (C) < 1), so the

stationary probability density of token price has a very long left tail.

4.2 The Optimal Issuance of Equity and Governance Tokens

In this subsection, we take an excursion to analyze the issuance of platform equity (or “governance

tokens”). In practice, governance tokens are popular among stablecoin platforms as means of

financing. For example, MakerDAO, the issuer of DAI (one of the top five stablecoins by market

value), introduced its governance tokens MKR. MKR holders vote on protocol changes and receive

payout via buy-backs, just like stock market investors receive payout through share repurchases.

So far, the platform recovers from the low-C region through the accumulation of internal funds.

We now allow the platform to raise dollar funds by issuing equity shares subject to a fixed financing

cost, χ0, and a proportional cost, χ1, following Gao, Whited, and Zhang (2020).47

47Firms face significant financing costs due to asymmetric information and incentive issues. A large literature has
sought to measure these costs, in particular, the costs arising from the negative stock price reaction in response to
the announcement of a new issue. Lee, Lochhead, Ritter, and Zhao (1996) document that for initial public offerings
(IPOs) of equity, the direct costs (underwriting, management, legal, auditing and registration fees) average 11.0% of
the proceeds, and for seasoned equity offerings (SEOs), the direct costs average 7.1%. IPOs also incur a substantial
indirect cost due to short-run underpricing. An early study by Asquith and Mullins (1986) found that the average
stock price reaction to the announcement of a common stock issue was −3% and the loss in equity value as a percentage
of the size of the new equity issue was as high as −31% (see Eckbo, Masulis, and Norli, 2007, for a survey).

25



To characterize the optimal issuance policy, we first note that when issuing equity, the platform

raises funds so that C jumps from the (lower) issuance boundary, denoted by C, to an interior value

Ĉ where V ′(Ĉ) = 1 + χ1, that is when the issuance amount is Ĉ − C, the marginal contribution

of equity issuance to platform value is equal to the marginal cost of issuing new shares. Note that

Ĉ ≤ C (the payout boundary) because V ′(Ĉ) = 1 + χ1 ≥ V ′(C) = 1 under the concavity of V (C).

Next, we show that the platform issues equity only when C falls to zero (i.e., C = 0).

Consider the change of existing shareholders’ value after equity issuance: [V (Ĉ) − (Ĉ − C) −

χ0−χ1(Ĉ −C)]−V (C). To obtain the post-issuance value of existing shareholders, we deduct the

competitive new investors’ equity value (equal to the funds they invested), (C − C), and deduct

the fixed and proportional issuance costs from the total platform value post-issuance, V (Ĉ). To

calculate the change, we subtract V (C), the value without issuance. Taking derivative with respect

to C, we obtain 1+χ1−V ′(C) < 0 for C < Ĉ because V ′(C) > V ′(Ĉ) = 1+χ1 under the concavity

of V (C).48 Therefore, the platform prefers C to be as low as possible and optimally sets it to zero.

Finally, as in the baseline model, the platform can avoid liquidation by off-loading risk to users,

as shown in (22), and obtain the value given by (25). Therefore, as C approaches zero, the platform

only opts for recapitalization at C = 0 if recapitalization generates a higher value than liquidation.

Accordingly, the lower boundary condition (25) for the value function is modified to

lim
C→0+

V (C) = max

{
lim
C→0+

V ′(C)

ρ

{
N ξA1−ξ − ηNσ

}
, V (Ĉ)− Ĉ − χ0 − χ1Ĉ

}
, (35)

The first term in the max operator is the value obtained from off-loading risk to users, given by (25).

The second term is the post-issuance value for existing shareholders. The results in Proposition 1

to 2, 3 and Corollary 1 still hold except that the boundary condition (25) is replaced by (35) with

Ĉ determined by V ′(Ĉ) = 1 + χ1 as previously discussed.

Proposition 5 (Optimal Equity Issuance). The platform raises external funds through equity

issuances only if Ct = 0 and when V (Ĉ)− Ĉ − χ0 − χ1Ĉ > limC→0+
V ′(C)
ρ

{
N ξA1−ξ − ηNσ

}
(see

(35)), where the optimal issuance amount Ĉ is given by V ′(Ĉ) = 1 + χ1.

Figure 8 illustrates the solution through a numerical example of costly equity issuance under

our baseline parameters and χ0 = 1 and χ1 = 0.1. The platform optimally raises new equity

when C falls to zero. Notably, there are three lines of defense to avoid liquidation: i) platform

48To prove the concavity of value function stated in Proposition 1, we only need the HJB equation (23) and the
upper boundary conditions (19) and (20), so recapitalization does not affect value function concavity.
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Figure 8: Solution with Costly Equity Issuance. In this figure, we plot the valuation function (Panel A),
token price volatility (Panel B), and token demand or users’ transaction volume (Panel C). The parameterization
follows Figure 2, and we set χ0 = 1 and χ1 = 0.1. The curves start at C = 0, the equity issuance boundary.

(excess) reserves C, ii) debasement σP > 0, and iii) equity issuance. Under these parameter values,

our model suggests a pecking order. First, the platform covers negative shocks by drawing on its

reserves. Second, the platform debases token price to share risk with users. Third, the platform

raises equity and incurs the issuance costs. If the equity issuance costs are sufficiently large, the

platform does not raise equity and the solution is the one from the baseline without equity issuance.

If, on the other hand, the equity issuance costs are sufficiently small, the platform may not debase

the token prior to issuing equity and thus token price remains stable at all times.

Suppose that the equity issuance costs are such that the platform i) recapitalizes once C reaches

zero and ii) debases token price prior to equity issuance. Note that when recapitalization happens,

Ct jumps from zero to Ĉ, which then implies an upward jump in the token demand from N(0) to

N(Ĉ) (for N(0) < N(Ĉ), see Proposition 3). If the platform does not adjust the token supply,

St, there will be an upward predictable jump in Pt, which implies an arbitrage opportunity. To

preclude arbitrage, the platform must expand token supply simultaneously as it issues equity so

that the token price stays at the pre-issuance level.49 Let us revisit the results on the token price

level in Corollary 2 and Proposition 4. Let Pj(C) denote the token price function after the j-th

recapitalization. We have

Pj(Ĉ) = Pj−1(0) , (36)

which replaces (34) as the boundary condition for the price-level ODE (33). Token price level before

the first recapitalization, P0(C) is still solved under the boundary condition (34), i.e., P0(C) = 1.

49Note that the expansion of token supply brings dollars of equal value into the reserve portfolio. This simultaneous
expansion of assets and liabilities does not imply any variation in the excess reserves Ct at C.
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Corollary 3 (Recapitalization and Token Price Level). Token price after the j-th recapital-

ization is solved by the ODE (33) subject to the boundary condition (36).

In the baseline model without equity issuance, the debasement of token is temporary: token price

level falls below 1 when C falls below C̃ due to negative shocks and it recovers back to 1 when the

platform accumulates sufficient amount of dollar revenues so that C crosses above C̃ (Proposition

4). When recapitalization happens, the debasement is permanent. After the j-th recapitalization,

token price level starts anew at a lower peg, Pj(Ĉ) = Pj−1(0), and if negative shocks deplete the

platform’s reserves and triggers another recapitalization, token price level declines along the process

and, right after recapitalization, stabilizes at an even lower peg, Pj+1(Ĉ) = Pj(0).

5 Regulating Stablecoins

We analyze three types of regulations. The first type, which is of our focus, stipulates a minimum

level of excess reserves (“capital requirement”). The rationale behind is to generate a sufficient risk

buffer so that the issuer is unlikely to debase the token. The second type (“stability regulation”)

is more direct. It forces the platform to keep the token price fixed. The third type stipulates

the riskiness of reserve assets. Our conclusion is that capital requirement, if carefully designed,

improves welfare. Stability regulation, in contrast, destroys the economic surplus from risk-sharing,

and regulating the riskiness of reserve assets may backfire and destabilizes token price due to the

platform endogenous response in its reserve management decisions.

5.1 Capital Requirement

The regulator requires C ≥ CL and forces the platform to liquidate if the requirement is violated.

Therefore, CL replaces zero as the lower (liquidation) bound of excess reserves.50 In Figure 9, we

plot the payout boundary C (Panel A), which is a measure of voluntary over-collateralization, and

the welfare measures for different values of CL. Not so surprisingly, when the capital requirement

tightens, the whole region of excess reserves is pushed to the right, resulting in a higher payout

boundary C in Panel A. Because reserves earn an interest rate r that is below the shareholders’

discount rate ρ, the platform shareholders’ value, V0, declines in CL, as shown in Panel B. Panel

C shows that users’ welfare is improved by the capital requirement but there exists a significant

50Because the stablecoins are over-collateralized so that coordination failure (or run) does not happen, unlike Car-
letti, Goldstein, and Leonello (2019), our model does not feature a need to introduce a separate liquidity requirement.
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Figure 9: Capital Requirement and Welfare. We plot the numerical solutions of payout boundary C (Panel
A), the platform shareholders’ value at t = 0, V0 (Panel B), users’ welfare at t = 0, W0 (Panel C), and total welfare
W0 + V0 (Panel D) over the regulatory minimum of excess reserves, CL. The parameterization follows Figure 2.

degree of decreasing return as the regulator pushes up CL. Appendix B.4 shows how we calculate

user welfare, W0 = E
[∫∞

0 e−rtdRi,t
]
.

What is interesting is that, in Panel D of Figure 9, the total welfare is non-monotonic in CL.

When the regulator increases CL from zero, the increase of users’ welfare overwhelms the decrease

of platform value, but as the capital requirement is tightened, the loss of platform value eventually

dominates. This suggests the existence of an optimal level of CL that maximizes the total welfare.

As long as the users’ welfare increases faster than the platform value decreases, the regulator

can administer a transfer from users to the platform, making the regulation Pareto-improving. For

example, the regulator can allow the platform to charge users a membership fees, i.e., a fixed cost of

access, and imposes a cap on such fees. This type of access fees is commonly seen in the literature

on regulation of utility networks (Laffont and Tirole, 1994; Armstrong, Doyle, and Vickers, 1996).

In Figure 10, we further demonstrate the stabilization effects of capital requirement. In Panel

A, we plot the ratio of C − C̃ to C − CL that measures the size of the stable subset of C where

the platform maintains P (C) = 1. As CL increases, the stable region enlarges. In Panel B, we plot

the probability of C > C̃ (i.e., σP (C) = 0) based on the stationary distribution of C, which shows

that over the long run the platform spends more time in the stable region when CL increases. In
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Figure 10: Capital Requirement and Token Stability. Using numeric solutions under different values

of CL, we plot the fraction of state space with Pt = 1, i.e., C−C̃
C−CL

(Panel A), stationary probability of zero token

volatility (Panel B), the long-run average (based on stationary probability density) of token volatility (Panel C), and

the expected time to reach C̃ from CL (Panel D). The parameterization follows Figure 2.

Panel C, we plot the long-run average value of σPt using the stationary probability distribution.

A declining pattern emerges, indicating that capital requirement is indeed effective in reducing

the token volatility. In Panel D, we plot the expected number of years it takes to reach C̃ from

CL (denoted by τ(CL)). In Appendix B.1, we show how to calculate τ(CL). This recovery time

decreases when the capital requirement is tightened. As CL increases, the platform at CL still has

abundant cash that can self-accumulate by via the interests earned on reserve holdings.

5.2 Stability Regulation

A key difference between stablecoins and bank deposits is that the issuers of stablecoins do not have

any obligations to maintain Pt = 1 while a large portion of bank deposits offer redemption at par

through the deposit insurance mechanism and various regulatory backstops. Should stablecoins be

more like regulated deposits and be legally required to maintain a perfectly stable value?

In Panel A of Figure 12, we show that under the zero-volatility requirement (i.e., σPt = 0), the

platform maintains a higher level of excess reserves to reduce the likelihood of liquidation because

the option of off-loading risk to users is no longer available. Holding more reserves with an interest

30



0.15 0.2 0.25

1.9

1.95

2

2.05

0.15 0.2 0.25

1.52

1.53

1.54

1.55

0.15 0.2 0.25

38

39

40

41

Figure 11: Risk-Sharing, Stability Regulation, and Welfare. Using the numerical solutions, we calculate
the payout boundary C (Panel A), the platform shareholders’ value at t = 0, V0 (Panel B), users’ welfare at t = 0,
W0 (Panel C), and the long-run average fees based on stationary probability density (Panel D) over different values
of users’ risk aversion η for both the baseline model (solid line) and the model under stability regulation (red dotted
line). The parameterization follows Figure 2.

rate below the shareholders’ discount rate reduces the platform value (see Panel B of Figure 12).

An interesting finding is that imposing the stability regulation even decreases users’ welfare

(Panel C of Figure 12) across all values of η. This seems to contradict the intuition that, by forcing

the platform to maintain a perfectly stable token value, users will benefit, especially when they are

more risk-averse. However, the argument ignores that, unable to off-load risk to users, the plat-

form can compensate its risk exposure with higher fees. Stability regulation is counterproductive

because it limits the risk-sharing between the platform and its users. When the platform is close

to liquidation, its effective risk aversion can be higher than η, so there is economic surplus created

from users’ absorbing risk from the platform. Stability regulation shuts down this insurance mar-

ket. Our results on stability regulation also reveal the fact that a commitment to perfectly stable

token does not improve welfare. In practice, stablecoin issuers cannot commit against debasement,

but even when such commitment is available, doing so would not be optimal.

5.3 Regulating the Riskiness of Reserve Assets and Volatility Paradox

Another regulatory option is to restrict the riskiness of reserve assets. Many are concerned about

the riskiness of reserve assets held by major stablecoin issuers as we discussed in Section 2. To

analyze such regulation, we extend our model to incorporate a risk-return trade-off in reserve assets:

dMt = rMtdt+ (Pt + dPt)dSt +Ntftdt+NtσdZt − dDivt +Mt(µ̂dt+ σ̂dZt), (37)
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Figure 12: Reserve Riskiness and Volatility Paradox. Using the numerical solutions, we calculate the
payout boundary C (Panel A), the stationary probability of a fixed token price (Panel B), the average volatility σPt
(evaluated at the stationary distribution of C), and the total welfare at t = 0, V0+W0 (Panel D). The parameterization
follows Figure 2. We set µ̂ = ωµ and present solutions with ω = 0.1 (solid line) and ω = 0 (dotted line). We consider
σ̂ ∈ [0.0999] so that the regularity condition r + µ̂ < ρ is satisfied.

where µ̂, σ̂ ≥ 0. Relative to (8), the law of motion has an additional term that reflects the expected

excess return on reserve holdings and the associated additional risk exposure. In Appendix B.2,

we solve this extension. Regulating the riskiness of reserve assets corresponds to stipulating σ̂.

Therefore, to analyze its effects, we conduct comparative statics with respect to σ̂. As we vary σ̂,

we change µ̂ accordingly while fix the Sharpe ratio at a constant ω ≡ µ̂/σ̂.

In Figure 12, we report the results of two sets of comparative statics with ω equal to 0 and

0.1 respectively.51 For both cases, more reserve risk (i.e., a higher σ̂) is associated with a higher

payout boundary C. This suggests that forcing the platform to hold low-risk assets (i.e., lowering

σ̂ through a regulatory mandate) reduces its incentive to hoard reserves. Moreover, as the platform

endogenously responds to reduce reserves, token price becomes more volatile. In Panel B and C,

we demonstrate such volatility paradox: Riskier reserves (i.e., a higher σ̂) is associated with more

stable token price, reflected in both a higher probability of Pt = 1 and a lower average σPt (evaluated

at the stationary distribution of C). Therefore, mandating a decline in σ̂ destabilizes token price.52

51Throughout our analysis, the parameters must satisfy the condition r+ µ̂ < ρ to preclude a solution in which the
platform indefinitely delays dividend payouts because returns on excess reserves exceed the shareholders’ discount
rate, a standard condition in dynamic liquidity management models (e.g., Riddick and Whited, 2009).

52The key to our mechanism of volatility paradox is the stablecoin issuer’s response in liquidity hoarding decisions,
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The welfare implications of regulating the riskiness of reserve assets are ambiguous and depend

on the Sharpe ratio ω = µ̂/σ̂. In Panel D, we show how the total welfare (the sum of platform value

and users’ value) varies with σ̂ under different Sharpe ratios. Under ω = 0, total welfare declines

in the riskiness of reserve assets, but the relation flips for ω = 0.1. The intuition is simple. Under

ω = 0, an increase in σ̂ indicates more risk but no more return on reserve holdings. While token

price becomes more stable thanks to the platform’s build-up of precautionary savings, holding

reserves is costly for the platform because the return is below shareholders’ discount rate as in

Riddick and Whited (2009).53 The platform may charges higher fees on users to compensate the

cost of holding more reserves, which offset the benefit of a more stable token price for users. As a

result, both the platform’s and users’ welfare decline. Under ω = 0.1, an increase in σ̂ brings in a

higher expected return on reserve holdings, and with these additional revenues, the platform can

reduce fees on stablecoin users and has more cash flows to buffer shocks, relying less on debasement

to off-load risk to users. As a result, both parties’ welfare can increase.

Our conclusion is two-fold. First, forcing the platform to hold low-risk assets triggers its response

to maintain less reserves. Second, the welfare implications depend on the risk-return trade-off.

6 Crypto Shadow Banking with User Collateral

The double-collateralization structure in Panel B of Figure 1 behind many stablecoins (e.g., DAI

issued by MakerDAO) fits into our analytical framework. By requiring users to post collateral, the

platform gains an additional degree of freedom (margin requirement). When setting the margin

requirement, the platform faces the trade-off between reducing risk exposure and user participation.

For each dollar of stablecoins, the platform requires a user to post mt dollars worth of collat-

eral. In practice, many risky assets are eligible collateral, mainly cryptocurrencies such as Bitcoin

and Ether, and thus are highly volatile. Let dZt denote a standard Brownian shock. Instead of

interpreting it as a shock directly to reserves as in our baseline model, here we interpret the shock

in the following way that is tied to the value of the user’s collateral portfolio.

For simplicity, we do not model users’ choice of collateral portfolio but rather assume that the

collateral portfolio has a continuum of assets (indexed by a) and, from t to t + dt, a fraction,

2(δdt−σdZt), of these assets incur a percentage loss, denoted by θa, which is drawn independently

which is different from the fire sale mechanism of volatility paradox in Brunnermeier and Sannikov (2014).
53As previously discussed, the wedge, ρ − r, can be microfounded with an exogenous Poisson-arriving liquidation

with intensity ρ − r. The literature on agency cost of cash holdings also provides a rationale for why the return on
liquidity holdings is below shareholders’ discount rate (Nikolov and Whited, 2014; Nikolov, Schmid, and Steri, 2019).
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across assets a from a uniform distribution on [0, 1].54 At time t, the expected loss of the collateral

portfolio is E
[
1
2 × 2(δdt− σdZt)

]
= δdt, where the expected loss per asset, 1

2 , is multiplied by the

fraction of assets in losses. The collateral portfolio also generates an expected value appreciation,

denoted by µ̃. Therefore, for each dollar of stablecoins, a user posts mt dollars worth of collateral,

with an expected net return equal to µ̃ − δ − r, where the last term represents the cost of giving

up the outside option of return r by locking wealth in the collateral portfolio.55

Under the collateral requirement, a representative user i’s problem of choosing the optimal

dollar value of stablecoin holdings, ui,t, given by (5) in the baseline model, is now described below

max
ui,t

{
1

β
Nα
t u

β
i,tA

(1−α−β)dt+ ui,t

(
µPt − η|σPt | − ft

)
dt+ ui,tmt

(
µ̃− δ − r

)
dt

}
, (38)

where the last term reflects the fact that the user’s wealth is being locked in a risky collateral backing

the stablecoins worth ui,t. As in the baseline model, to solve the platform’s optimal strategies, we

first note that, given the token price dynamics (i.e., µPt and σPt ), the platform can directly set

Nt through the fees ft. Under the collateral requirement, users’ optimal choice of ui,t implies the

following equation that connects Nt (i.e., the aggregated ui,t) and ft:

ft =

(
A

Nt

)1−ξ
−mt(r + δ − µ̃) + µPt − η|σPt | . (39)

Clearly, when mt = 1, δ = 0, and µ̃ = 0 (i.e., the platform does not impose a haircut and the

collateral does not have expected losses or gains), equation (39) reduces to (13), the corresponding

equation in the baseline model. Given ft, a higher mt leads to lower Nt according to (39), which

reflects the fact that imposing a stricter collateral requirement leads to lower demand for stablecoins

under the parameter restriction, r + δ − µ̃ > 0 (i.e., it is costly for users to post collateral).

To derive the law of motion of the state variable Ct, the excess reserves, we first derive the

54Klimenko, Pfeil, Rochet, and Nicolo (2016) show that 2(δdt − σdZt) is the ∆ → 0 limit of a random variable
whose value is 2(δ∆ − σ

√
∆) or 2(δ∆ + σ

√
∆) with equal probabilities. Before taking the limit, the parameters,

δ and σ, can be chosen so that the random fraction is well-defined within [0, 1]. The convergence is akin to that
shown by Cox, Ross, and Rubinstein (1979) in their Binomial model of option pricing. In practice, the variation of
a collateral asset (i.e., θa in our model) can be very large when the collateral is a cryptocurrency. What triggered
the dramatic debasement of IRON was the almost 100% drop over two days of the collateral cryptocurrency, TITAN
(Tiwari, 2021). The run on IRON in turn exacerbates the sell-off of TITAN.

55This expression is analogous to the user’s cost of capital (Jorgenson, 1963) with the additional µ̃.
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platform’s flow cost per dollar of stablecoins created:

2(δdt− σdZt)× P ({mt(1− θa) < 1})E [1−mt(1− θa)|mt(1− θa) < 1]

=2(δdt− σdZt)×

(∫ 1

1− 1
mt

(1−mt(1− θa))dθa

)
=

1

mt
(δdt− σdZt) . (40)

In the first line, the fraction of users’ collateral assets that incur losses is multiplied by the proba-

bility of a sufficiently large loss that leads to the violation of the margin requirement, and the last

component is the platform’s loss upon receiving and liquidating the collateral (with a remaining

value of mt(1− θt)) and repurchasing the one dollar worth of stablecoins out of circulation. There-

fore, given Nt, the dollar value of all stablecoins issued, −Nt
mt

(δdt − σdZt) enters into the law of

motion of reserves (8), replacing NtσdZt (which is essentially the case where mt = 1 and δ = 0).

This flow cost is essentially the consequence of the stablecoin issuer extending an guarantee of the

stablecoins’ value, which is a contingent liability akin to the guarantee that a bank extends to its

off-balance-sheet conduits as discussed in Section 2.

Following the derivation in Section 4, we use (39) to substitute out ft in the law of motion of

reserves to obtain the law of motion of excess reserves, Ct:

dCt =

(
rCt − r(mt − 1)Nt +mt(µ̃− δ)Nt +N ξ

t A
1−ξ −Ntη|σPt | −

Ntδ

mt

)
dt+Nt

(
σ

mt
− σPt

)
dZt.

(41)

When mt = 1, δ = 0, and µ̃ = 0, equation (41) reduces to (17) in the baseline model. In Appendix

B.5, we provide all omitted solution details and derive the HJB equation of the value function, V (Ct)

as well as the platform’s optimal choices of fees (or equivalently, N(Ct)), token price dynamics (or

equivalently, σP (Ct)), and the margin requirement m(Ct). Figure 13 reports the numeric solutions.

In the model with user collateral, the shock to the platform’s reserves, dZt, originates from the

fluctuation of users’ collateral value, and the platform’s exposure is directly and inversely linked to

the margin requirement, mt, as shown in (41). Therefore, we expect the optimal margin requirement

to be higher when the platform’s excess reserves run down. This is shown in lower-left Panel of

Figure 13. Introducing user collateral does not change the qualitative dynamics of the platform’s

franchise value, V (C), the transaction volume, N(C), and the token price volatility, σP (C).

Discussion: immediate liquidation of collateral. When users violate the margin require-

ment, the platform immediately liquidates users’ collateral and repurchase stablecoins out of circu-
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Figure 13: Margin Requirement. This figure plots the platform value function (Panel A), token demand
or transaction volume (Panel B), optimal marginal requirement (Panel C), and token-price volatility (Panel D) as
functions of excess reserves C. The parameterization follows Figure 2 with µ̃ = 0.05 and δ = 0.025.

lation. A question naturally arises: instead of liquidating the collateral and repurchasing stablecoins

right away, why not incorporate the collateral assets into the platform’s reserve portfolio? Doing

so will create two types of stablecoins, one with the backing of both users’ collateral and reserves

(users of these stablecoins have not yet violated the margin requirements) and the other only backed

by the platform’s reserves (users of these stablecoins have violated the margin requirement). This

is not done in practice, and analytically, it complicates the model by introducing a new stable

variable, that is the fraction of stablecoins only backed by the platform’s reserves.

7 Stablecoins, Digital Platforms, and Data Privacy

The interest in stablecoins among practitioners and regulators skyrocketed after Facebook an-

nounced its stablecoin project Libra (recently renamed to Diem). Different from other stablecoin

issuers, Facebook has the unique advantage of strong network effects. Its comprehensive infrastruc-

ture covers social network, social media, and e-commerce (Facebook Shop). For individual users,

the benefit of adopting Diem is enormous if other users on Facebook adopts Diem, because a great

variety of activities can be enabled by a universal and global means of payment. In this section,
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Figure 14: Network Effects. We plot the payout boundary (Panel A), the long-run probability of C > C̃ based
on stationary distribution (Panel B), the sum of platform value and users’ welfare (Panel C), and users’ share of total
welfare (Panel D) over different values of α (degree of network externality). The parameterization follows Figure 2.

we analyze the role of network effects in stablecoin management and show that regulators should

impose more stringent capital requirements on large platforms with strong network effects.

The stablecoin project of Facebook attracted enormous attention also because of the big data

ambition of Facebook. Large platforms profit from user-generated data and use targeted content to

secure and grow user base. A global payment system enabled by a stablecoin allows the platform

to gather transaction data. We extend the model to incorporate transaction data as a productive

asset for the platform and explore how data acquisition affects a platform’s stablecoin strategies.

7.1 The Role of Network Effects

For simplicity, our analysis is based on the baseline model without users’ collateral. In our model,

strong network effects are captured by a large value of α (see (2)). In Figure 14, we compare

stablecoins with different degrees of network effects. Panel A plots the payout boundary C as a

measure of voluntary over-collateralization over different values of α. On the one hand, stronger

network effects make the platform more profitable, which encourages precautionary savings to

protect the franchise value. On the other hand, stronger network effects imply a higher level of

user transactions near C = 0 (i.e., N in (26)), which then implies a faster recovery out of the low-C
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region (through fees and token-issuance revenues) and a weaker incentive to hold reserves. The two

counteracting forces lead to a hump-shaped relationship between C and α in Panel A of Figure 14.

In Panel B of Figure 14, we show the long-run probability of C > C̃ (based on stationary

probability distribution of C) increases in α. Stronger network effects imply that, over the long

run, the system spends more time in states with P (C) = 1. Under stronger network effects,

recovery out of the low-C region is faster due to a higher level of user activities and the resultant

faster replenishment of reserves via fees and token-issuance proceeds. Our paper sheds light on why

stablecoins issued by Facebook and other technology giants with strong network infrastructure are

regarded as more promising than those issued by start-up payment service providers. Stronger

network effects lead to stabler tokens and a lower likelihood of token debasement.

Finally, we examine the impact of network effects on welfare. In Panel C of Figure 14, we show

that total welfare of the platform and its users increases in the degree of network effects. This

explains why it is particular beneficial for technology giants with strong network infrastructure to

introduce stablecoins as common means of payment among their customers. Network infrastructure

is not limited to social network and e-commerce. Financial network is another example. JPMorgan

Chase introduces JPM Coin to facilitate transactions among institutional clients.

Interestingly, as we gradually increase the degree of network effects in Panel D of Figure 14, the

split of total welfare between the platform and its users is rather stable. Under stronger network

effects, the monopolistic platform can extract more rents from its users through fees or off-loading

risk in distress. However, precisely due to the network effects, individual users do not internalize

the positive effect of their adoption on other users, so the platform has incentives to internalize the

network externality by stimulating user activities through fee reductions (or subsidies) and token

price stability. These two counteracting forces imply that, as network effects become stronger, the

platform’s share of total surplus does not necessarily increase.

Beyond the implications on stablecoins issued by large digital platforms, our analysis also con-

tributes to the ongoing debate on stablecoin interoperability (Brunnermeier and Payne, 2021).

Stablecoins that are interoperable across different DeFi platforms (blockchains) exhibit stronger

network effects of user adoption and therefore exhibit less price instability. The increase of welfare

in network effects suggests that regulators should encourage interoperability.

Lastly, Figure 15 shows that stablecoins with stronger network effects should be more heavily

regulated in terms of capital requirements. In Panel A, we plot the capital requirement C∗L that

maximizes total welfare. In Panel B and C, we plot, respectively, the total welfare with and without
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Figure 15: Capital Requirement and Network Effects. We calculate the optimal capital requirement C∗L
that maximizes total welfare (Panel A), total welfare both with capital requirement C∗L (solid black line) and without
capital requirement (dotted red line) (Panel B), and the welfare wedge between the optimally regulated equilibrium
and the laissez-faire equilibrium (Panel C) over different values of α. Note that Panel C depicts the difference between
the solid black line and the dotted red line from Panel B. The rest of parameterization follows Figure 2.

capital requirement and the welfare improvement under optimal capital requirement (relative to the

laissez-faire equilibrium). An important insight is that the capital requirement tightens as network

effects strengthen. In fact, without network effects (α = 0), it is optimal not to impose the capital

requirement (i.e., C∗L = 0). The key to this result is the network externality of individual users’

token holdings. The platform internalizes the externality in its decisions but the internalization is

not perfect. As shown in Figure 14, the platform cannot seize the full surplus as its share of total

welfare is rather stable in α and always below 100%. Therefore, as α increases, the total welfare

and the component not internalized by the platform both increase. This calls for a tighter capital

requirement that raises the overall level of reserves closer to social optimum.

7.2 Payment and Data Privacy

Data is now a major asset of digital platforms. Social networks, such as Facebook and Twitter,

utilize user-generated data to target users for content delivery. Payment platforms, such as PayPal

and Square, have become data centers (Bank for International Settlements, 2019). They provide

services beyond payment, for example, extending loans to consumers and businesses based on

data-driven credit analysis. We follow Veldkamp (2005), Ordoñez (2013), Fajgelbaum, Schaal, and

Taschereau-Dumouchel (2017), Parlour, Rajan, and Zhu (2020), and Jones and Tonetti (2020) to

model data as a by-product of user activities.56 We show that data acquisition incentive destabilizes

the stablecoin. Our results demonstrate a connection between data privacy and stablecoins, two

56Veldkamp and Chung (2019) provide an excellent survey of the literature of data and aggregate economy.
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areas that have both attracted enormous attention but have been analyzed separately so far.

We now interpret A in (2) as a measure of effective data units that enhance platform productivity

in locking in users’ attention and stimulating user activities through user profiling. As previously

discussed, we interpret Nt as the transaction volume and specify the following law of motion:

dAt = κA1−ξ
t N ξ

t dt . (42)

Users’ transactions generate a flow of raw data, κN ξ
t dt, where the parameter κ captures the tech-

nological efficiency of data processing and storage. To what extent the raw data contributes to the

effective data units depends on the current amount of effective data via A1−ξ
t . The complementarity

between the old and new data captures the fact that the value of new data increases in the quality

of statistical algorithms, which in turn depends on the amount of existing data that are needed to

train the algorithms.57 The Cobb-Douglas form is chosen for analytical convenience. To guarantee

the convergence of the objective function, we impose the parametric restriction ρ > κnξ.

As platform productivity improves, we assume transaction capacity to increase accordingly, i.e.,

N t = nAt, where n > 0 is constant. User optimization is static and follows the baseline model. As

shown in (12), the transaction volume (or token demand) Nt ≡ ntAt where

nt =
1(

r + ft − µPt + η|σPt |
) 1

1−ξ
∧ n . (43)

As in the baseline model, the platform sets nt through the fees, ft, and sets the dynamics of token

price through its choice of σPt . The model now has three natural state variables, reserves Mt, token

supply St, and data stock At. Similar to the baseline model, Ct = Mt − StPt and At summarize

payoff-relevant information, driving the platform value, Vt = V (Ct, At), and the dollar value of

token, Pt = P (Ct, At). To simplify the notations, we will suppress the time subscripts.

We conjecture that the system is homogeneous in A, and in particular, the platform’s value

function and dollar value of token are given by V (C,A) = v(c)A and P (C,A) = P (c), respectively,

where the excess reserves-to-data ratio is the key state variable for the platform’s optimal strategies:

c ≡ C

A
. (44)

We will confirm the conjecture as we solve the platform’s optimization problem in the following.

57Related, in Farboodi, Mihet, Philippon, and Veldkamp (2019), data have increasing return to scale.
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First, to derive the law of motion of ct, we follow the derivation of the baseline model to obtain

dCt =
(
rCt +Atn

ξ
t − ηAtnt|σPt |

)
dt+Atnt(σ − σPt )dZt − dDivt . (45)

Given (42) and (45), the law of motion of ct reads

dct =
(
rct + nξt − ηnt|σPt | − κn

ξ
t ct

)
dt+ nt(σ − σPt )dZt −

dDivt
At

. (46)

Under the value function conjecture, V (C,A) = v(c)A, and the laws of motion of A (42) and c

(46), the HJB equation for v(c) in the interior region (where dDivt = 0) is given by

ρv(c) = max
n∈[0,n],σP

{[
v(c)− v′(c)c

]
κnξ + v′(c)

(
rc+ nξ − ηn|σP |

)
+

1

2
v′′(c)n2(σ − σP )2

}
. (47)

The first term on the right side contains the marginal value of user-generated data (“data q”)

q(c) =
∂V (C,A)

∂A
= v(c)− v′(c)c . (48)

When the marginal value of reserves, VA(C,A) = v′(c), falls to one, the platform pays out dividends.

We define the payout boundary as c through v′(c) = 1. The optimality of c also implies v′′(c) =

0. Note that as in the baseline model, when C (or c) approaches zero, the platform can avoid

liquidation by setting σP (c) = σ to off-load risk to its users and gradually replenish reserves.58

For simplicity, we do not consider recapitalization (equity issuance). In sum, the platform’s excess

reserves, Ct, move in [0, cA]. As data grows, the platform accumulates more excess reserves.

Proposition 6 (Platform Optimization under Data-Driven Productivity). The value func-

tion takes the form v(ct)At, where v(ct) solves the HJB equation (47) subject to the conditions

v′(c) = 1, v′′(c) = 0, and lim
c→0

σP (c) = σ. The amount of excess reserves, Ct, stays below cAt

where the upper bound increases with At, the effective data units. At Ct = cAt, the platform pays

dividends when dCt > 0 so that dividend payments cause ct to reflect at c.59

Next, we characterize the optimal transaction volume and volatility. Following our analysis of

58The boundary condition for v(c) is that as c approaches zero, −v′′(c) approaches infinity (see footnote 44).
59When dCt > 0 at Ct = C, the dividend amount is equal to dCt (i.e., exactly the amount needed to avoid Ct > C).
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the baseline model, we define the effective risk aversion based on v(c):

Γ(c) = −v
′′(c)

v′(c)
. (49)

The following proposition summarizes the optimal choices of n(c) and σP (c).

Proposition 7 (Data q, Token Volatility, and Transaction Volume). At c where the platform

maintains P (c) = 1 (and σP (c) = 0), the optimal transaction volume (token usage) is

N = n(c)A =

[
ξ

Γ(c)σ2

(
1 +

κq(c)

v′(c)

)] 1
2−ξ

A ∧ nA ; (50)

otherwise, the optimal token volatility is

σP (c) = σ − η

Γ(c)n(c)
∈ (0, σ) , (51)

and the optimal transaction volume (token usage) is

N = n(c)A =

[
ξ

ησ

(
1 +

κq(c)

v′(c)

)] 1
1−ξ

A ∧ nA . (52)

The optimal transaction volume is proportional to A, the effective data units. Therefore, as the

platform gathers more user-generated data following (42), it induces more transactions. With data

as a productive asset, the platform faces a new trade-off. It can accumulate more reserves through

higher fees or, by reducing fees, boost the transaction volume to accumulate more data. Therefore,

the ratio of marginal value of data (the data q) and marginal value of reserves, q(c)/v′(c), emerges

in both (50) and (52). When the data q is high relative to the marginal value of reserves, the

platform implements a high transaction volume through low fees. As a reminder, given the token

price dynamics, the monotonic relationship between transaction volume and fees is given by (43).

The optimal choice of token volatility resembles that of the baseline model. In the region where

σP (c) > 0, it is the ratio of users’ risk aversion to the platform’s risk aversion that drives σP (c).

And in this region, the optimal transaction volume in (52), even scaled by A, is no longer the

constant as in the baseline model but depends on q(c)/v′(c) instead, showing the trade-off between

investing in data and accumulating reserves. Moreover, the optimal transaction volume depends on

users’ risk aversion η as η determines the cost of obtaining insurance from users (losing transaction

volume after off-loading risk to users). When the platform absorbs all risk (i.e., σP (c) = 0), the
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Figure 16: Transaction Volume and Token Volatility. This figure plots the At-scaled transaction volume
n(c) in Panel A and token return volatility σP (c) in Panel B. In both panels, the red dotted lines mark the payout
boundary c, and the red dashed line marks c̃, the threshold that separates the regions of volatile and constant token
prices. The parameterization follows Figure 2 with the additional parameters n = 2000 and κ = 0.00025. Note that
n = 2000 implies that for A0 = 0.0025, N t = nAt = 5 as under the parameterization in the baseline (see Figure 2).

optimal transaction volume varies with its own risk aversion Γ(c) (50) because Γ(c) drives the

required risk compensation through higher fees that causes the transaction volume to decline.

Panel A of Figure 16 reports the optimal transaction volume. In contrast to Panel A of Figure

4 where the transaction volume is constant in the region where σP (c) > 0, the A-scaled volume

now increases in c. The intuition is that as reserves become more abundant relative to data, the

platform lowers fees to acquire more data through users’ transactions at the expense of less dollar

revenues for reserve accumulation. Panel B of Figure 16 shows a similar token volatility dynamics

as Panel A of Figure 3 from the baseline model but in the space of c = C/A (instead of C).

In our model, the technological advance in data acquisition and analysis can be captured by an

increase of the parameter κ. In Figure 17, we examine the impact of data technology improvement

on the operation of stablecoin platforms. In Panel A, we show that in response to an increase in κ,

the platform optimally raises the (A-scaled) payout boundary, c, which suggests a greater degree

of over-collateralization. However, this does not translate into a more stable token price. As shown

in Panel B, the long-run (stationary) probability of sustaining the peg decreases as the platform

becomes more efficient in acquiring and utilizing user-generated data.

Therefore, our analysis reveals a paradox—if a digital platform introduces stablecoin to enhance

its payment system and acquisition of transaction data, its stablecoin becomes more volatile pre-

cisely when data becomes more important. Conversely, stablecoins issued by platforms that respect

user privacy and refrain from data usage are more stable in value according to our model.

To understand the mechanism, we plot the average fees and average transaction volume (both
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Figure 17: Data Technology Progress and Platform Operation. We plot the A-scaled payout boundary
(Panel A), the probability of P (c) = 1 (Panel B), the average transaction volume (Panel C), and the average fees per
dollar of transactions (Panel D) over κ (the efficiency of data technology). The moments in Panel B, C, and D are
based on the stationary distribution of c. The parameterization follows Figure 2 with n = 2000.

calculated from the stationary distribution of c) against κ in Panel C and D of Figure 17. To

accumulate transaction data, the platform would like to increase the transaction volume. This is

achieved through lower fees. In fact, the average fees per dollar of transaction even dips increasingly

into the negative territory (i.e., becoming subsidies to users), a prediction in line with the practice

that large digital platforms offer subsidies to grow user activities (Rochet and Tirole, 2006; Rysman,

2009). However, lowering fees reduce cash flows to the reserve buffer so that even though the

platform hold more reserves at the payout boundary (see Panel A of Figure 17), it accumulates

reserves at a slower pace on average over the state (c) space, which destabilizes the token. In sum,

data acquisition incentive makes the stablecoin issuer more aggressive in subsidizing users at the

expense of its own precautionary savings that are key to the stabilization of token price.

Our model highlights an unintended benefit of privacy regulation. Regulations that restrict the

stablecoin issuer’s ability to collect and utilize user-generated data can be interpreted as a decrease

in κ. Prob(σPt = 0) decreases in κ as shown in Panel B of Figure 17, so privacy regulations improve

the stability of token value (i.e., reducing the probability of the stablecoin breaking the buck).
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8 Conclusion

As decentralized finance develops rapidly, stablecoin initiatives arise to meet the demand for stable

means of payment in the blockchain space. Stablecoins are issued by private entities or decentralized

autonomous organizations (DAOs) that promise to maintain price stability by holding reserves for

open market operations and users’ redemption. However, as issuers maximize their own payoffs

rather than total welfare, conflicts of interests naturally arise between the issuers and stablecoin

users, making room for welfare-enhancing regulations. Digital networks (e.g., Facebook) plan to

introduce their own stablecoins. Behind such initiatives, the incentives are complex especially when

a payment system allows the platform to gather and profit from users’ transaction data.

In spite of the enormous attention from both regulators and practitioners, to this date, there has

not been a unified framework to address these issues. In this paper, we fill this gap and develop a

dynamic model of stablecoin management. The equilibrium rationalizes a rich set of strategies and

features two endogenous regimes. When the issuer’s reserves are sufficiently high, the stablecoin

price is fixed. When the reserves fall below a critical threshold, the stablecoin price comoves with

the issuer’s reserves, allowing risk sharing between the issuer and stablecoin users.

The system is bimodal and exhibits a unique instability mechanism. Above the reserve thresh-

old, the issuer credibly sustains a fixed price, which induces a strong token demand that allows

the issuer to profit from open market operations and further grow reserve holdings. This virtuous

cycle turns into a vicious cycle when reserves fall below the threshold after negative shocks. As the

stablecoin price becomes volatile, the users’ token demand declines, so the issuer has to either drain

its reserves further to stabilize price through open market operations or let debasement continue.

The vicious cycle can be broken by issuing equity (governance tokens) to replenish reserves.

We evaluate several regulatory proposals and find that capital requirement improves welfare and

should strengthen for payment platforms with strong network effects. In contrast, a legally binding

commitment to price stability destroys welfare. We also demonstrate a volatility paradox: Forcing

a stablecoin issuer to hold low-risk assets may destabilize the stablecoin. Its welfare implications

depend on how the expected return on reserve assets comove with riskiness. Finally, our model

can be easily extended to incorporate a q-theory of data acquisition. Investing in data crowds out

reserve hoarding and thus destabilizes the stablecoin price. Therefore, data privacy regulation has

an unintended benefit of improving the price stability of stablecoins issued by data-rich platforms.
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A Proofs

A.1 Proof of Propositions 1 and 2

The proof of Propositions 1 and 2 is split in three parts. Part I derives the HJB equation and its

boundary conditions. Part II establishes the concavity of the value function. Part III shows that

there is no liquidation.

Part I — HJB equation and dividend payouts

Recall that the platform chooses dividends {dDivt}, transaction volume {Nt} (or equivalently

transaction fees {ft}), and token price volatility {σPt } (which implicitly pins down token price and

the choice of token supply via the market clearing condition Nt = StPt) to maximize the future

expected discounted value of dividends. By the dynamic programming principle, the platform solves

(18) subject to dDivt ≥ 0 and the law of motion (17). As such, platform value V (C) = V (Ct)

satisfies the following HJB equation (in differential form):

ρV (C)dt = max
N∈[0,N ],σP ,dDiv≥0

{dDiv + E[dV (C)]} . (A.1)

In what follows, we assume that (A.1) admits a unique and twice differentiable solution V (C).

Using Ito’s Lemma and expanding the right-hand-side, we obtain

ρV (C)dt = max
{N∈[0,N ], σP ,dDiv≥0}

{
(1− V ′(C))dDiv + V ′(C)

(
rC +N ξA1−ξ − ηN |σPt |

)
dt (A.2)

+
1

2
V ′′(C)N2(σ − σP )2dt

}
. (A.3)

It follows that dividend payouts are optimal if and only if V ′(C) ≥ 1. As in Bolton et al. (2011), the

optimal dividend policy therefore follows a barrier strategy, so that (in optimum) dividend payouts

dDiv cause Ct to reflect at C, i.e., dDivt = max{Ct−C, 0}. And, the threshold C satisfies smooth

pasting and super contact conditions (for details, see, e.g., Dumas (1991)), i.e.,

V ′(C)− 1 = V ′′(C) = 0.

Given this dividend policy, the HJB equation (A.2) simplifies to (23) whenever Ct ≤ C, as stated

in Proposition 2. In addition, the optimal dividend policy also implies Ct ≤ C for all t ≥ 0.

Part II — Value function concavity

We prove the concavity of value function in Proposition 1. Recall the HJB equation (23), that is,

ρV (C) = max
{N∈[0,N ], σP }

{
V ′(C)

(
rC +N ξA1−ξ − ηN |σP |

)
+

1

2
V ′′(C)N2(σ − σP )2

}
.
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Using the envelope theorem, we differentiate both sides of the HJB equation (evaluated under the

optimal controls N and σP ) with respect to C to obtain

ρV ′(C) = rV ′(C) + V ′′(C)
(
rC +N ξA1−ξ − ηN |σPt |

)
+

1

2
V ′′′(C)N2(σ − σP )2.

We can solve for

V ′′′(C) =
2

N2(σ − σP )2

[
(ρ− r)V ′(C)− V ′′(C)

(
rC +N ξA1−ξ − ηN |σP |

)]
Using the smooth pasting condition, V ′(C) = 1, and the super-contact condition, V ′′(C) = 0, we

obtain V ′′′(C) > 0. As V ′′(C) = 0, it follows that V ′′(C) < 0 in a left-neighbourhood of C, in that

there exists ε > 0 so that V ′′(C) < 0 for C ∈ (C − ε, C).

We show now that V ′′(C) < 0 for all C ∈ [0, C). Suppose to the contrary that there exists

Ĉ < C with V ′′(Ĉ) ≥ 0 and set without loss of generality

Ĉ = sup{C ∈ (0, C − ε) : V ′′(C) ≥ 0}. (A.4)

As V ′′(C) < 0 on the interval (C−ε, C) and the value function is twice continuously differentiable, it

follows that V ′′(Ĉ) = 0 and therefore the optimization in the HJB equation (23) implies σP (Ĉ) < σ.

In addition, V ′(Ĉ) ≥ 1, so that V ′′′(Ĉ) > 0. Thus, there exists C ′ > Ĉ with V ′′(C ′) ≥ 0, a

contradiction. Therefore, the value function is strictly concave on [0, C).

Part III — There is no liquidation

Consider that Ct approaches zero, i.e., Ct → 0. If the volatility of dCt, σC(Ct) = Nt(σ − σP (Ct))

does not tend to zero as Ct approaches zero, Ct drops below zero and the platform is liquidated

with probability one in which case the platform owners’ value becomes zero. To prevent liquidation

as Ct approaches zero, it must be that i) the volatility of dCt, σC(Ct) = Nt(σ − σPt ), tends to zero

and ii) the drift of dCt, µC(Ct) = rCt +N ξ
t A

1−ξ −Ntη|σPt |, remains positive positive. Formally,

lim
C→0+

µC(C) > 0 = lim
C→0+

σC(C), (A.5)

must hold.

Thus, if the platform prevents liquidation, then — by the law of motion (17) — it must be

limC→0+ σ
P (C) = σ. As V (C) is concave with V ′(C) = 1, it follows that V ′(C) > 0 for all

C ∈ [0, C]. As such, when σP (C)→ σ, then

V (C)→ 1

ρ
V ′(C)µC(C).
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Therefore, when limC→0+ σ
P (C)→ 0, the equivalence

lim
C→0+

V (C) > 0 ⇐⇒ lim
C→0+

µC(C) > 0

holds.

Next, using the HJB equation (23), we obtain

V (C) ≥ V ′(C)

ρ

(
rC + max

{N∈[0,N ]}

{
N ξA1−ξ − ηNσ

})

≥ 1

ρ

(
max

{N∈[0,N ]}

{
N ξA1−ξ − ηNσ

})
> 0 .

The first inequality uses that setting σP = σ is always possible (but not necessarily optimal) and the

second inequality uses C ≥ 0 and V ′(C) ≥ 1. As such, the platform obtains strictly positive value

from continuation, implying that liquidation is not optimal and the platform optimally prevents

liquidation. Thus, liquidation never occurs, and (A.5) holds.

A.2 Proof of Proposition 3

The proof of Proposition 3 is split in three parts. Part I characterizes the optimal controls N(C)

and σP (C). Part II shows that platform risk-aversion γ(C) decreases with C. Part III demonstrates

that there exists C̃ so that for C < C̃ (C ≥ C̃). σP (C) > 0 (σP (C) = 0).

Part I — Optimal control variables

We characterize the optimization in (23) and solve for the optimal control variables N = N(C) and

σP = σP (C) in Proposition 3. To start with, we define

N = arg max
N≤N

{
N ξA1−ξ − ηNσ

}
, (A.6)

which yields

N = min

{(
ξA1−ξ

ησ

) 1
1−ξ

, N

}
.

Now, we first optimize the HJB equation (23) over σP or equivalently over NσP .

If interior (i.e., σP > 0), the choice of σP satisfies the first order optimality condition

∂V (C)

∂σP
= 0 ⇐⇒ −ηV ′(C)− V ′′(C)(Nσ −NσP ) = 0.

We can rearrange the above first order condition to derive

NσP =
−ηV ′(C)−NσV ′′(C)

−V ′′(C)
. (A.7)
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It is clear from the maximization in the HJB equation (23) that setting σP < 0 is never optimal.

As such, to obtain the optimal choice of σP we truncate the expression in (A.7) from below by zero

and obtain

NσP = max

{
0,
−ηV ′(C)−NσV ′′(C)

−V ′′(C)

}
= max

{
0,− ηV ′(C)

−V ′′(C)
+Nσ

}
. (A.8)

Note that by (12), users’ aggregate token holdings are always positive (i.e., Nt > 0 at all times

t ≥ 0) so that σP > 0 ⇐⇒ NσP > 0 and σP = 0 ⇐⇒ NσP = 0. We distinguish between two

different cases: 1) σP = 0 and 2) σP = 0.

1. First, consider σP > 0. Then, we can insert the relation (A.7) (or (A.8) noting that NσP > 0)

into (23) to get

ρV (C) = max
N∈[0,N ]

{
V ′(C)

[
rC +N ξA1−ξ − ηNσ − η2V ′(C)

V ′′(C)

]
+

1

V ′′(C)

[
(ηV ′(C))2

2

]}
.

Thus, by (A.6), N = N > 0 is the optimal choice of N , so that by means of (A.8):

σP = max

{
0,− ηV ′(C)

−V ′′(C)N
+ σ

}
= max

{
0, σ − η

γ(C)N

}
, (A.9)

where the last equality uses the definition γ(C) = −V ′′(C)
V ′(C) .

2. Second, consider σP = 0. Inserting σP = 0 into (23), the HJB equation becomes

ρV (C) = max
N∈[0,N ]

{
V ′(C)[rC +N ξA1−ξ] + V ′′(C)

[
N2σ2

2

]}
. (A.10)

If interior (i.e., N(C) < N), the optimal choice of N = N(C) must solve the first order

condition

V ′(C)ξN ξ−1A1−ξ + V ′′(C)Nσ2 = 0 ⇐⇒ V ′(C)ξN ξ−2A1−ξ + V ′′(C)σ2 = 0.

Thus, optimal N = N(C) reads

N(C) = min

{(
A1−ξξV ′(C)

−V ′′(C)σ2

) 1
2−ξ

, N

}
, (A.11)

where we truncate above by N .

Overall, note that σP (C) (partially) decreases with γ(C), the platform’s risk-aversion, in that
∂σP (C)
∂γ(C) ≤ 0. When σP (C) > 0, this follows from (A.9), and, when σP = 0, this trivially holds.
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Part II — Effective risk-aversion

We prove γ′(C) < 0, i.e., d(−V
′′(C)/V ′(C))
dC < 0, in Proposition 3. To do so, we consider the following

two cases, 1) σP = 0 and 2) σP = 0:

1. Consider σP > 0 so that N = N . Then, the HJB equation (23) can be simplified to

ρ
V (C)

V ′(C)
= rC +N ξA1−ξ − ηNσ − η2

2

V ′(C)

V ′′(C)
. (A.12)

Differentiating the equation above with respect to C, we obtain

ρ

(
1− V ′′(C)V (C)

V ′(C)2

)
= r − η2

2

d(V ′(C)/V ′′(C))

dC
,

which can be rewritten as

d(V ′(C)/V ′′(C))

dC
=

2

η2

[
(r − ρ) + ρ

(
V ′′(C)V (C)

V ′(C)2

)]
.

Note that because ρ > r and V ′′(C) < 0, it follows that implies d(V ′(C)/V ′′(C))
dC < 0, i.e.,

d(−V ′′(C)/V ′(C))
dC = γ′(C) < 0.

2. Consider σP = 0, so the HJB (23) simplifies to

ρV (C) = max
N∈[0,N ]

{
V ′(C)[rC +N ξA1−ξ] + V ′′(C)

[
N2σ2

2

]}
, (A.13)

In this case, we further consider two cases, a) N = N(C) < N and b) N = N(C) = N :

a) N(C) < N and N =
(
A1−ξξV ′(C)
−V ′′(C)σ2

) 1
2−ξ

. In this case, the HJB can be simplified to

ρ
V (C)

V ′(C)
= rC +

1

2

(
ξA1−ξ

σξ

) 2
2−ξ
(

2− ξ
ξ

)(
V ′(C)

−V ′′(C)

) ξ
2−ξ

. (A.14)

Differentiating the equation above with respect to C, we obtain

ρ

(
1− V ′′(C)V (C)

V ′(C)2

)
= r − 1

2

(
ξA1−ξ

σξ

) 2
2−ξ
(

V ′(C)

−V ′′(C)

) 2ξ−2
2−ξ d(−V ′(C)/V ′′(C))

dC
,

(A.15)

implying d(V ′(C)/V ′′(C))
dC < 0 (because V ′′(C) < 0 and ρ > r), that is, d(−V ′′(C)/V ′(C))

dC =

γ′(C) < 0.

b) N(C) = N . In this case, the HJB can be simplified to

ρ
V (C)

V ′(C)
= rC +N

ξ
A1−ξ +

N
2
σ2

2

V ′′(C)

V ′(C)
. (A.16)
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Differentiating the equation above with respect to C, we obtain

ρ

(
1− V ′′(C)V (C)

V ′(C)2

)
= r − N

2
σ2

2

d(−V ′′(C)/V ′(C))

dC
, (A.17)

which implies d(−V ′′(C)/V ′(C))
dC = γ′(C) < 0 (because V ′′(C) < 0 and ρ > r).

Part III — Existence of threshold C̃

In Part I, we have shown that σP (C) increases with γ(C) and, in Part II, we have shown that

γ(C) decreases with C with γ(C) = 0. Therefore, σP (C) decreases with C. As γ(C) = 0, it must

be that σP (C) = 0 in a left-neighbourhood of C. Because there is no liquidation, it holds that

limC→0+ σ
P (C) = σ and thus — by continuity — σP (C) > 0 in a right-neighbourhood of C = 0.

As σP (C) is continuous and decreases with C on [0, C], there exists unique C̃ ∈ (0, C) so that

σP (C) > 0 for C < C̃ and σP (C) = 0 for C ≥ C̃ (while C ∈ [0, C]). The threshold C̃ solves

σ − η

γ(C̃)N
= 0,

which implicitly defines C̃ (see (A.9)). This concludes the argument.

A.3 Proof of Corollary 1

First, consider that C < C̃, so σP (C) > 0 and N(C) = N . Using (13), we obtain

f(C) =

(
A

N

)1−ξ
− r + µP (C)− η|σP (C)| . (A.18)

Second, consider that C ≥ C̃ and N(C) < N . Then, σP (C) = µP (C) = 0 and

N(C) =

(
ξA1−ξ

γ(C)σ2

) 1
2−ξ

.

Using (13) and simplifying, we obtain

f(C) =

(
Aγ(C)σ2

ξ

) 1−ξ
2−ξ
− r.

Third, consider C ≥ C̃ and N(C) = N so that µP (C) = σP (C) = 0. Using (13), we obtain

f(C) =

(
A

N

)1−ξ
− r.

Finally, note that because γ(C) decreases with C, N(C) increases with C for C ≥ C̃ with N(C) =

N . Therefore, there exists C̃ ′ ≥ C̃ so that N(C) = N if C ∈ [C̃ ′, C].

A6



A.4 Proof of Corollary 2 and Proposition 4

The relevant arguments are already presented in the main text. In a Markov equilibrium with state

variable C, token price P (C) and σP (C) are functions of C only. Ito’s Lemma implies

σP (C) =
P ′(C)

P (C)
N(C)(σ − σP (C),

as desired. We normalize P (C) = 1. For C ≥ C̃, it holds that σP (C) = 0 and thus P ′(C) =

P ′′(C) = 0, so µP (C) = 0. For C < C̃, it holds that σP (C) > 0 and so P ′(C) > 0.

A.5 Proof of Proposition 5

Follows from the arguments presented in the main text.

A.6 Proof of Corollary 3

Follows from the arguments presented in the main text.

A.7 Proof of Proposition 6

To start with, recall the law of motion of the state variables Ct (see (45)),

dCt =
(
rCt +Atn

ξ
t − ηAtnt|σPt |

)
dt+Atnt(σ − σPt )dZt − dDivt , (A.19)

and At,
dAt
At

= κnξtdt.

Define nt = Nt/At. Using Ito’s Lemma, we can calculate

dct =
(
rct + nξt − ηnt|σPt | − κn

ξ
t ct

)
dt+ nt(σ − σPt )dZt −

dDivt
At

, (A.20)

with drift µc(ct) ≡ rct + nξt − ηnt|σPt | − κn
ξ
t ct and volatility σc(ct) = nt(σ − σPt ).

By the dynamic programming principle, the platform’s value function V (C,A) solves the fol-

lowing HJB equation (in differential form):

ρV (C,A)dt = max
σP ,N∈[0,N ],dDiv≥0

{dDiv + E[dV (C,A)]} .

We can use Ito’s Lemma to expand the right-hand-side of the HJB equation:

ρV (C,A)dt = max
σP ,N∈[0,N ],dDiv≥0

{
dDiv(1− VC(C,A)) + VC(C,A)

(
rC +Anξ − ηAn|σP |

)
dt

+ VA(C,A)Aκnξdt+
VCC(C,A)N2(σ − σP )2

2
dt

}
, (A.21)
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where a subscript denotes the partial derivative (e.g., VC(C,A) = ∂V (C,A)
∂C ). As such, dividend

payouts dDiv > 0 are optimal if and only if VC(C,A) ≤ 1; otherwise, dDiv = 0. Using the

conjecture V (C,A) = Av(c), we obtain

VC(C,A) = v′(c), VA(C,A) = v(c)− v′(c)c, and VCC(C,A) =
v′′(c)

A
. (A.22)

As is standard (see, e.g., Bolton et al. (2011)), optimal dividend payouts cause ct to reflect at c,

where the payout threshold c satisfies v′(c)− 1 = v′′(c) = 0. That is, dDiv = Amax{c− c, 0}, and

ct ≤ c at all times t ≥ 0.

When there are no dividend payouts, the HJB equation (A.21) therefore becomes (using (A.22),

dividing both sides by dt and A, and simplifying):

ρv(c) = max
n∈[0,n],σP

{[
v(c)− v′(c)c

]
κnξ + v′(c)

(
rc+ nξ − ηn|σP |

)
+

1

2
v′′(c)n2(σ − σP )2

}
, (A.23)

which is (47).

As c approaches zero, the platform can either liquidate (yielding v(0) = 0) or prevent liquidation

by i) setting σP (c)→ σ and ii) ensuring that the drift of dc, µc(c), remains positive. Formally, to

prevent liquidation as c→ 0,

lim
c→0+

µc(c) > 0 = lim
c→0+

σc(c) (A.24)

must hold. Setting σP (c)→ σ as c→ 0 yields

lim
c→0+

ρv(c) = max
n∈[0,n]

lim
c→0+

(
v(c)κnξ + v′(c)(nξ − ηnσ)

)
> 0.

Note that because κnξ < ρ and v′(c) ≥ 1, limc→0+ v(c) > 0 implies limc→0+ µc(c) > 0, as (under

the optimal controls)

lim
c→0+

(ρ− κn(c)ξ)v(c) = lim
c→0+

v′(c) max
n∈[0,n]

µc(c).

As v′(c) ≥ 1 for all c ≤ c and so

lim
c→0+

max
n∈[0,n]

v′(c)µc(c) ≥ max
n∈[0,n]

(nξ − ηnσ) > 0, (A.25)

it follows that limc→0+ v(c) > 0, and the platform is better off averting liquidation. In optimum,

liquidation never occurs and (A.24) holds, implying limc→0+ σ
P (c) = 0.
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A.8 Proof of Proposition 7

The optimal control variables, n = n(c) and σP = σP (c), are determined by the optimization in

the HJB equation (47), that is,

ρv(c) = max
n∈[0,n],σP

{[
v(c)− v′(c)c

]
κnξ + v′(c)

(
rc+ nξ − ηn|σP |

)
+

1

2
v′′(c)n2(σ − σP )2

}
. (A.26)

We consider the following two cases, 1) σP > 0 and 2) σP = 0.

1. If σP > 0, then the first order condition

∂v(c)

∂σP
= 0 ⇐⇒ −v′(c)ηn(c)− v′′(c)n(c)2(σ − σP (c)) = 0

must hold. We can solve for

σP (c) = σ − ηv′(c)

v′′(c)n(c)
= σ − η

Γ(c)n(c)
∈ (0, σ),

where

Γ(c) = −v
′′(c)

v′(c)
.

Inserting the optimal choice of σP (c) back into (47), we obtain

ρv(c) = max
n∈[0,n],σP

{[
v(c)− v′(c)c

]
κnξ + v′(c)

(
rc+ nξ − ησn+

η

Γ(c)

)
+

1

2
v′′(c)

(
η

Γ(c)

)2
}
.

If interior (i.e., n(c) < n), the optimal choice of n = n(c) solves the first order condition

κξ
[
v(c)− v′(c)c

]
n(c)ξ−1 + v′(c)(ξn(c)ξ−1 − ησ) = 0.

We define

q(c) = v(c)− v′(c)c

and solve for

n(c)ξ−1 =
v′(c)ησ

κξq(c) + ξv′(c)
⇐⇒ n(c) =

(
ξ(v′(c) + κq(c))

ησv′(c)

) 1
1−ξ

.

Thus,

n(c) =

[
ξ

ησ

(
1 +

κq(c)

v′(c)

)] 1
1−ξ

∧ n,

as desired.

2. Consider σP (c) = 0. If interior (i.e., n(c) ∈ (0, n)), optimal n = n(c) must solve the first
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order condition

ξ
[
κq(c) + v′(c))n(c)ξ−1

]
+ v′′(c)n(c)σ2 = 0.

Dividing both sides through n(c) > 0, we obtain

ξ
[
κq(c) + v′(c)

]
n(c)ξ−2 + v′′(c)σ2 = 0 ⇐⇒ n(c)ξ−2 =

−v′′(c)σ2

ξ(κq(c) + v′(c))

We can solve for

n(c) =

(
ξ(κq(c) + v′(c))

−v′′(c)σ2

) 1
2−ξ

.

Thus,

n(c) =

[
ξ

Γ(c)σ2

(
1 +

κq(c)

v′(c)

)] 1
2−ξ

∧ n,

which was to show.

Finally, note that analogous to the baseline, there exist three regions and two thresholds c̃ and c̃′

such that i) σP (c) > 0 if and only if c < c̃ (otherwise, σP (c) = 0) and ii) n(c) = n if and only if

c ≥ c̃′ (otherwise, n(c) < n).

B Derivations

B.1 Calculating the Expected Recovery Time

Note that there exists C̃ ∈ (0, C) such that σP (C) = 0. Given Ct = C at time t, we define

τ(Ct) = E[τ∗ − t|Ct = C] with τ∗ = inf{s ≥ t : Cs ≥ C̃},

which is the expected time until net liquidity reaches C̃ and token price volatility vanishes.

We can rewrite τ(Ct) as

τ(Ct) = Et

[∫ τ∗

t
1dt

]
. (B.27)

By definition, it holds that when Ct = C ≥ C̃, then τ∗ = t and

τ(Ct) = τ(C) = 0.

By the integral expression (B.27) and the dynamic programming principle, it follows that For

C ≤ τ(C), the function τ(C) solves the ODE

0 = 1 + τ ′(C)µC(C) +
σC(C)2τ ′′(C)

2
, (B.28)
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where

µC(C) = rC +N(C)ξA1−ξ − ηN(C)|σP (C)|

σC(C) = N(C)(σ − σP (C))

are drift and volatility of net liquidity C respectively. The ODE (B.28) is solved subject to the

boundary condition

τ(C̃) = 0 (B.29)

at C = C̃. At C = CL (possibly CL = 0), the lower boundary of the state space, the boundary

condition

lim
C→CL

[1 + τ ′(C)µC(C)] = 0

applies.

B.2 Model with Additional Reserve Risk and Returns

Setup. We modify the dynamics of dMt in (8) by considering that reserve shocks (partially) scale

with the level of Mt, in that

dMt = rMtdt+ (Pt + dPt)dSt +Ntftdt+NtσdZt − dDivt +Mt(µ̂dt+ σ̂dZt). (B.30)

Using (13), (16), and Mt = Ct + Nt (i.e., Ct = Mt − StPt = Mt −Nt), we obtain the dynamics of

excess reserves:

dCt =
(
rCt +N ξ

t A
1−ξ −Ntη|σPt |

)
dt+Nt(σ − σPt )dZt + (Ct +Nt)(µ̂dt+ σ̂dZt)− dDivt , (B.31)

This model specification nests the baseline. The baseline is obtained for µ̂ = σ̂ = 0, in which case

(B.30) becomes (8) and (B.31) becomes (17). We solve for a Markov in which all quantities and

the platform’s value function V (C) are expressed in terms of excess reserves C. Unless necessary,

we omit time subscripts.

HJB Equation. As in the baseline, dividend payouts occur once C reaches the payout boundary

C. The location of the payout boundary is determined by smooth pasting and super contact

conditions, that is, V ′(C)− 1 = V ′′(C) = 0. In the interior of the state space when C ∈ (0, C), the
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HJB equation for the value function becomes

ρV (C) = max
{N∈[0,N ], σP }

{
V ′(C)

(
rC + µ̂(C +N) +N ξA1−ξ − ηN |σP |

)
(B.32)

+
1

2
V ′′(C)

[
N(σ − σP ) + (C +N)σ̂

]2}
,

subject to V ′(C)− 1 = V ′′(C) = 0.

Optimal Controls. We solve now for the optimal controls, N(C) and σP (C), determined via

the optimization in (B.32). For this purpose, define γ(C) = −V ′′(C)
V ′(C) as the platform’s effective

risk-aversion, just as in the main text and baseline. If σP (C) > 0, then σP (C) satisfies the first

order condition, ∂V (C)
∂σP

= 0. The first order condition with respect to σP reads

−ηNV ′(C)− V ′′(C)
[
N(σ − σP ) + σ̂(C +N)

]
N = 0.

Thus,

N(σ − σP ) + σ̂(C +N) =
η

γ(C)
⇐⇒ σP (C) = σ +

σ̂(C +N)

N
− ηγ(C)

N
, (B.33)

where σC(C) = N(σ − σP ) + σ̂(C +N) is the volatility of excess reserves. When above expression

for σP (C) in (B.33) is negative, then σP (C) = 0.

We distinguish now between two cases:

1. First, consider σP > 0. Inserting the expression for σP from (B.33) into the HJB equation

(B.32) and simplifying, we calculate

ρV (C) = max
N∈[0,N ]

{
V ′(C)

(
rC + µ̂(C +N) +N ξA1−ξ − η

[
(σ + σ̂)N + σ̂C − ηγ(C)

])
+

1

V ′′(C)

[
(ηV ′(C))2

2

]}
. (B.34)

If N = N(C) is interior (i.e., N(C) ∈ (0, N)), the first order condition ∂V (C)
∂N = 0 holds.

Using (B.34), the first order condition with respect to N reads then

µ̂+ ξN ξ−1A1−ξ − η(σ + σ̂) = 0,

so that

N = N ≡ A
(

ξ

η(σ + σ̂)− µ̂

) 1
1−ξ
∧N. (B.35)
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Re-inserting the expression for N (i.e., N = N) into the expression (B.33) for σP yields

σP (C) = σ + σ̂ − ηγ(C)− σ̂C
N

.

2. Second, consider that σP = 0. Inserting σP = 0 into (B.32), we can calculate the first order

condition with respect to N , ∂V (C)
∂N = 0:

V ′(C)
(
µ̂+ ξN ξ−1A1−ξ

)
+ V ′′(C)

[
Nσ + σ̂(C +N)

]
(σ + σ̂) = 0. (B.36)

In general, this equation (B.36) cannot be solved for N in closed-form. Let N∗(C) the solution

to (B.36). Then,

N(C) = N∗(C) ∧ N,

where we account for the exogenous upper boundary N on N .

Final Solution Steps. Next, we characterize the boundary behavior of V (C) as C approaches

zero. Recall that σC(C) = N(σ − σP ) + σ̂(C + N) is the volatility of excess reserves. Similar to

the baseline, as C approaches zero, σC(C)→ 0 which implies σP (C)→ σ+ σ̂. Recall that we have

shown that N(C) = N ⇐⇒ σP (C) > 0. Therefore, we can use the simplified HJB equation

(B.34) to derive

lim
C→0

V (C) = lim
C→0

V ′(C)

ρ

(
A1−ξN ξ + µ̂N − ηN(σ + σ̂)

)
.

To solve the model it is useful to solve an expression for V ′′′(C). To do so, differentiate both sides

of the HJB under the envelope theorem with respect to C to obtain:

(ρ− r − µ̂)V ′(C) = V ′′(C)µC(C) + V ′′(C)σC(C)σ̂ +
V ′′′(C)σC(C)2

2
.

For the value function to be concave and for a non-degenerate solution to exist, it must be that

V ′′′(C) > 0, which requires

r + µ̂ < ρ.

That is, shareholders’ discount rate ρ must exceed the rate of return on excess reserves, r + µ̂.

Otherwise, holding excess reserves would not be costly and shareholders would indefinitely delay

dividend payouts. For the formal proof of value function concavity in the baseline (i.e., µ̂ = σ̂ = 0),

see Appendix A.1. The arguments of this proof can easily be adjusted to extend the proof of value

function concavity when µ̂ > 0 or σ̂ > 0.

B.3 Solution when reserve shocks scale with Mt

Recall that the model of Appendix B.2 nests the baseline model. Also note that upon setting

σ = 0, µ̂ = 0, and σ̂ > 0, we obtain that Brownian shocks to reserves Mt are Mtσ̂dZt in (B.30)

and scale with the level of reserves Mt. We present the numerical solution of this alternative
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Figure B.1: Model Solution when reserve shocks scale with Mt. We use our baseline parameters
from Figure 2 except that we set σ = 0 and σ̂ = 0.1. We also set µ̂ = 0.

model specification in Figure B.1. We use our baseline parameters, except that we set σ̂ = 0.1,

σ = 0, and µ̂ = 0. The findings are qualitatively the same as in the baseline. The value function

is increasing and concave in C (left panel A). The middle panel B shows that the token price is

stable, if C is sufficiently large (i.e., C ≥ C̃), and there is token price volatility for lower values of

C and, in particular, as C approaches zero. Token price volatility decreases with excess reserves

and becomes zero at some threshold C = C̃ (vertical dashed red line). And, the right panel C

illustrates that token usage increases with C, just as in the baseline. As such, we conclude that the

specific specification of the Brownian shocks to reserves in (8) does not drive our results.

B.4 Calculating User Welfare

B.4.1 Baseline

To start with, recall that any users’ utility flow is

dRit ≡ Nα
t A

1−ξ u
β
it

β
dt+ uit

(dPt
Pt
− rdt− ftdt− η|σPt |dt

)
As such,

E[dRit] = Nα
t A

1−ξ u
β
it

β
dt+ uit

(
µPt dt− rdt− ftdt− η|σPt |dt

)
.

Inserting uit = Nt and (13) and using ξ = α+ β yields

E[dRit] =
N ξ
t A

1−ξ

β
dt+Nt

(
µPt dt− rdt− (N ξ−1

t A1−ξ + µPt − r − η|σPt |)dt− η|σPt |dt
)

=
N ξ
t A

1−ξ

β
dt−N ξ

t A
1−ξdt =

(1− β)A1−ξ

β
N ξ
t dt. (B.37)

As a next step, define the user welfare from time t onward, i.e.,

Wt := E
[∫ ∞

t
e−r(s−t)dRis

]
. (B.38)
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As C is the payoff-relevant state variable, we can express user welfare as function of C, in that

Wt = W (Ct). The dynamic programming principle implies that user welfare solves on [0, C] the

ODE

rW (Ct)dt = E[dRit] + E[dW (Ct)].

We can rewrite the ODE as

rW (C) =
(1− β)A1−ξ

β
N(C)ξ +W ′(C)µC(C) +

W ′′(C)σC(C)2

2
, (B.39)

whereby

µC(C) = rC +N(C)ξA1−ξ − ηN(C)|σP (C) + µ̂(C +N(C))|

σC(C) = N(C)(σ − σP (C)) + σ̂(C +N(C))

are drift and volatility of net liquidity C respectively. For the baseline, we set µ̂ = σ̂ = 0. For the

model extension in Appendix B.2, µ̂ and µ̂ are potentially positive.

The ODE (B.39) is solved subject to the boundary conditions

W ′(C) = 0

and

lim
C→0+

W (C) =
1

r
lim
C→0+

(
(1− β)A1−ξ

β
N(C)ξ +W ′(C)µC(C)

)
.

B.4.2 Model extension with Big Data as a Productive Asset

In the model extension with big data as a productive asset, user welfare is a function W (C,A), that

is, Wt = W (Ct, At). We conjecture and verify that W (C,A) scales with A, i.e., W (C,A) = Aw(c)

with c = C/A. First, we recall (B.37), that is,

E[dRit] =
(1− β)A1−ξ

β
N ξ
t dt =

(1− β)A

β
nξtdt,

and note that nt = Nt/At is a function of ct = Ct/At only, i.e., nt = n(ct). Second, the dynamic

programming principle implies that user welfare solves the ODE

rW (Ct, At)dt = E[dRit] + E[dW (Ct, At)]. (B.40)

Using the conjecture W (C,A) = Aw(c), we obtain

WC(C,A) = w′(c), WA(C,A) = w(c)− w′(c)c, and WCC(C,A) =
w′′(c)

A
. (B.41)
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Expanding the right hand side of (B.40), using (B.41) and W (C,A) = Aw(c), simplifying and

dividing both sides of (B.40) by dt, one derives

(r − κn(c)ξ)w(c) = w′(c)µc(c) +
w′′(c)σc(c)

2

2
, (B.42)

with drift µc(c) ≡ rc+ n(c)ξ − ηn(c)|σP (c)| − κn(c)ξc and volatility σc(ct) = n(c)(σ − σP (c)). The

ODE (B.42) is solved subject to the boundary conditions w′(c) = 0 and

lim
c→0+

(r − κn(c)ξ)w(c) = lim
c→0+

w′(c)µc(c).

B.5 Details on the Model with User Collateral

In this section, we provide the solution details under the model specification with user collateral

requirements. To start with, take users’ problem (38) (facing collateral requirements mt):

max
ui,t

{
1

β
Nα
t u

β
i,tA

(1−α−β)dt+ ui,t

(
µPt − η|σPt | − ft

)
dt+ ui,tmt

(
µ̃− δ − r

)
dt

}
.

All users act the same so that ui,t = Nt. Analogous to the baseline, we then calculate optimal

platform transaction volume (after solving users’ optimization and invoking ui,t = Nt):

Nt =
A(

r + ft − µPt + η|σPt +mt(µ̃− δ − r)|
) 1

1−ξ
,

when Nt < N . We can solve the above for ft, yielding (39), i.e.,

ft =

(
A

Nt

)1−ξ
−mt(r + δ − µ̃) + µPt − η|σPt |.

As a next step in the solution, we calculate∫ 1

1− 1
mt

(1−mt(1− θa))dθa =
[
θ −mtθ + 0.5mtθ

2
a

]1
1− 1

mt

= 1− 0.5mt −
(

1− 1

mt
−mt + 1 + 0.5mt

[
1 +

1

m2
t

− 2

mt

])
=

1

2mt
,

so

2(δdt− σdZt)× P ({mt(1− θa) < 1})E [1−mt(1− θa)|mt(1− θa) < 1]

=2(δdt− σdZt)×

(∫ 1

1− 1
mt

(1−mt(1− θa))dθa

)
=

1

mt
(δdt− σdZt), (B.43)
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which was to show.

Under this alternative specification, platform reserves follow

dMt = rMtdt+ (Pt + dPt)dSt +Ntftdt−
δNt

mt
dt+

Ntσ

mt
dZt − dDivt.

Inserting (39), we obtain

dMt − (Pt + dPt)dSt = rMtdt+N ξ
t A

1−ξdt− δNt

mt
dt−mt(r + δ − µ̃)Ntdt (B.44)

+Nt

(
µPt − η|σPt |

)
dt− Ntσ

mt
dZt − dDivt . (B.45)

By Ito’s Lemma, d(StPt) = dStPt + StdPt + dStdPt. As a result, we can calculate that Ct follows

dCt = µC(Ct)dt+ σC(Ct)dZt − dDivt,

with

µC(C) = rC − r(m− 1)N(C) +m(µ̃− δ)N(C) +N(C)ξA1−ξ −N(C)η|σP (C)| − N(C)δ

m

σC(C) = N(C)
( σ
m
− σP (C)

)
and σPt = σP (Ct) and Nt = N(Ct).

As in the baseline, dividend payouts occur at the upper reflecting boundary C, satisfying V ′(C)−
1 = V ′′(C) = 0. Then, the dynamic programming principle, the HJB equation for C ∈ (0, C) can

be written as

ρV (C) = max
N∈[0,N ],m,σP

V ′(C)µC(C) +
σC(C)2V ′′(C)

2
.

To solve for the optimal controls, we distinguish between the cases 1) σP (C) > 0 and 2) σP (C) = 0:

1. Suppose that σP (C) > 0. Then, the first order condition with respect to σP yields

∂V (C)

∂σP
= 0 ⇐⇒ −ηV ′(C)− V ′′(C)

(
Nσ

m
−NσP

)
= 0

so that

NσP =
−ηV ′(C)− V ′′(C)Nσm

−V ′′(C)
.

Overall,

NσP = max

{
0,
−ηV ′(C)− V ′′(C)Nσm

−V ′′(C)

}
= max

{
0,− ηV ′(C)

−V ′′(C)
+
Nσ

m

}
.
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We can insert this expression for σP into (23) to get

ρV (C) = max
N∈[0,N ],m

{
V ′(C)

[
rC +N ξA1−ξ − ηNσ

m
− r(m− 1)N +m(µ̃− δ)N

− Nδ

m
− η2V ′(C)

V ′′(C)

]
+

1

V ′′(C)

[
(ηV ′(C))2

2

]}
.

The choice of m is independent of N . One can calculate that optimal m solves the first-order

condition

µ̃− δ − r +
δ

m2
+
ησ

m2
= 0,

so that

1

m2
=
r + δ − µ̃
δ + ησ

⇐⇒ m = m ≡

√
δ + ησ

r + δ − µ̃
.

Next, we can take the first-order condition with respect to N to obtain

ξN ξ−1A1−ξ − ησ

m
− r(m− 1) +m(µ̃− δ)− δ

m
= 0.

Thus,

N(C) = N = A

(
ξ

ησ
m + r(m− 1)−m(µ̃− δ) + δ

m

) 1
1−ξ

∧ N (B.46)

2. Suppose that σP = 0. Then, taking the derivative with respect to N yields

∂V (C)

∂N
=

1

ρ

(
V ′(C)

[
ξN ξ−1A1−ξ − r(m− 1) +m(µ̃− δ)− δ

m

]
+N

( σ
m

)2
V ′′(C)

)
.

Taking the first-order condition with respect to m yields

∂V (C)

∂m
= 0 ⇐⇒ V ′(C)N

[
µ̃− δ − r +

δ

m2

]
−N2V ′′(C)

σ2

m3
= 0. (B.47)

Thus,

N = N(C) =
−V ′(C)

V ′′(C)

(
r + δ − δ/m2 − µ̃

σ2/m3

)
=
−V ′(C)

V ′′(C)

(
(r + δ − µ̃)m3 − δm

σ2

)

Finally, we discuss the value function at the payout boundary C where V ′(C) − 1 = V ′′(C) = 0.

At C = C, we have — as in the baseline — γ(C) = V ′′(C) = 0. As such,

σP (C) = 0

and

N(C) = N.
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Using (B.47), we obtain

m(C) =

√
δ

r + δ − µ̃

as the margin requirement at C = C. Analogous to the baseline, there exist three regions and two

thresholds C̃ and C̃ ′ such that i) σP (C) > 0 if and only if C < C̃ (otherwise, σP (C) = 0) and

ii) N(C) = N if and only if C ≥ C̃ ′ (otherwise, N(C) < N). The platform optimally prevents

liquidation as C approaches zero, leading to the boundary condition

lim
C→0+

σP (C) = 0 ⇐⇒ lim
C→0+

σP (C) =
σ

m
.

This boundary condition can be manipulated to obtain a condition analogous to (??). Using that

lim
C→0+

N(C) = N, lim
C→0+

m(C) = m and lim
C→0+

σC(C) = 0,

we obtain

lim
C→0+

V (C)

V ′(C)
=

1

ρ

{
− r(m− 1)N +m(µ̃− δ)N +N ξA1−ξ −Nη σ

m
− Nδ

m

}
.

B.6 Negative Lower Bound in the State Space

In this Section, we provide the model solution without the assumption of over-collateralization,

Ct ≥ 0. Instead, the lower bound on Ct, denoted CL, can potentially be negative. For simplicity,

we do not consider a run under Ct < 0. We characterize a no-run equilibrium in the following. To

start with, note that regardless of the value of the lower bound CL, the law of motion (17) applies

for Ct, and transaction volume Nt is characterized in (12). In a Markov equilibrium, all quantities

can be expressed as functions of C only, so we omit time subscripts unless necessary. As is standard,

dividend payouts are made at an endogenous payout boundary C, with V ′(C)−1 = V ′′(C) = 0. On

(CL, C), the platform’s value function V (C) solves the HJB equation (23). The optimal controls

σP (C) and N(C) are determined according to the optimization in the HJB equation (23).

The platform operates under C ≥ CL and M ≥ 0 (i.e., the value of reserves must remain

positive). We analyze the case of CL < 0. To begin with, note that

M = C + SP ≥ 0 ⇐⇒ C ≥ −SP = −N,

where token market clearing implies SP = N (see (7)). Due to N ≤ N and M ≥ 0, it follows

that C ≥ −N . That is, CL ≥ −N . Another observation is that for C < 0, the optimization

constraint N(C) ≥ −C ⇐⇒ M ≥ 0 applies to the optimization in the HJB equation (23) to

ensure reserves M remain positive. We numerically verify that this constraint never binds under

our baseline parameters.
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Figure B.2: Solution with A Negative Lower Bound on C. This figure plots the platform value function
(Panel A), token price volatility (Panel B), and token demand and usage (Panel C) as functions of excess reserves C.
The parameterization follows Figure 2, and the lower bound is CL = −0.823.

To ensure Ct ≥ CL at all times t ≥ 0 and so to prevent C from dropping below CL, it is necessary

that i) the drift of dC remains positive and ii) the volatility of dC vanishes, as C approaches CL.

According to (17), the second requirement ii) is equivalent to

lim
C→CL

σP (C) = σ.

And, recall that by maximization in the HJB equation (23), optimal transaction volume becomes

N(C) = N whenever σP (C) > 0 and the constraint N(C) ≥ −C does not bind, where N is

characterized in closed-form in (26) (for details, see Part I of the proof of Proposition 3). As a result,

limC→CL N(C) = max{N,−CL}. Inserting C = CL, σP (C) = σ, and N(C) = max{N,−CL} into

(17), we obtain the following drift of dC, denoted µC(C), as C approaches CL:

lim
C→CL

µC(C) = max{N,−CL}ξA1−ξ − ηmax{N,−CL}σ + rCL.

Equating above expression to zero, we obtain that the drift of dC remains zero as C approaches

CL as long as

CL ≥
1

r

(
ηmax{N,−CL}σ − (max{N,−CL})ξ A1−ξ

)
=: ĈL(CL). (B.48)

Combining this relation with CL ≥ −N , we obtain the lowest possible CL, which we call CminL :

CminL = max
{
ĈL(ĈL),−N

}
.

We solve the model for the lowest possible CL, that is, CL = CminL .60 Because drift and volatility

of excess reserves vanish as C approaches CL = CminL , the boundary condition limC→CL V (C) = 0

applies.

60Note that a decrease of CL relaxes the platform’s optimization constraint C ≥ CL and therefore is beneficial for
the platform.
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Figure B.2 presents the model solution with lower bound CL = CminL under our baseline param-

eters. Under our baseline parameters, CminL = −0.823, N = 2.778 > −CL and CL > −N = −5. We

verify that the constraint N(C) ≥ −C never binds under our baseline parameters. A novel finding

is that depending on the circumstances, the same stablecoin may be under- or over-collateralized, in

that C takes in equilibrium both positive and negative values. The other findings are qualitatively

the same as in the baseline. The value function is increasing and concave in C (left panel A). The

middle panel B shows that the token price is stable, if C is sufficiently large (i.e., C ≥ C̃), and there

is token price volatility for lower values of C and, in particular, as C approaches the lower bound

CL and tokens become under-collateralized. Token price volatility decreases with excess reserves

and becomes zero at some threshold C = C̃ (vertical dashed red line). And, the right panel C

illustrates that token usage increases with C, just as in the baseline. As such, we conclude that the

focus on over-collateralization, C ≥ 0 (i.e., CL = 0), does not drive our results.
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