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Abstract

We propose that investment strategies should be evaluated based on their net-of-

trading-cost return for each level of risk, which we term the “implementable efficient

frontier.” While numerous studies use machine learning return forecasts to generate

portfolios, their agnosticism toward trading costs leads to excessive reliance on fleeting

small-scale characteristics, resulting in poor net returns. We develop a framework that

produces a superior frontier by integrating trading-cost-aware portfolio optimization

with machine learning. The superior net-of-cost performance is achieved by learning

directly about portfolio weights using an economic objective. Further, our model gives

rise to a new measure of “economic feature importance.”
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This paper studies how security information can be used for portfolio selection in a flexible

and realistic setting with transaction costs. The goal is thus both to provide a powerful tool

for portfolio choice and to shed new light on which security characteristics are economically

important drivers of asset pricing.

The financial machine learning (ML) literature provides a flexible framework to com-

bine several characteristics into a single measure of overall expected returns (e.g. Gu et al.,

2020). The same literature documents the relative “feature importance” of different return

prediction characteristics (e.g. Chen et al., 2021). These findings suggest that the prediction

success of ML methods is often driven by short-lived characteristics that work well for small

and illiquid stocks (e.g. Avramov et al., 2021), suggesting that they might be less important

for the real economy (e.g. Van Binsbergen and Opp, 2019). The high transaction costs of

portfolio strategies based on ML imply that these strategies are difficult to implement in

practice and, more broadly, raise questions about the relevance and interpretation of the

predictability documented in this literature. Do ML-based expected return estimates merely

tell us about mispricings that investors don’t bother to arbitrage away because the costs

are too large, the mispricing too fleeting, and the relevant stocks too small to matter? Or,

do trading-cost-aware ML-based predictions also work for large stocks, over significant time

periods, and in a way that it useful for large investors, thus providing information of their

preferences?

This paper seeks to generate predictions that are economically useful. We are interested in

deriving ML-driven portfolios that can be realistically implemented by market participants

with a substantial fraction of aggregate assets under management, such as large pension

funds or other professional asset managers. If a strategy is implementable at scale, then

the predictive variables that drive such portfolio demands are informative about equilibrium

discount rates of major companies (Koijen and Yogo (2019)).

While ML with transaction costs is challenging to attack with brute force, we deliver a

tractable solution through the help of economic theory. Specifically, we show how to integrate

the ML problem into a generalized version of the optimal portfolio selection framework of

Gârleanu and Pedersen (2013). The main thrust of our approach is to feed the objective

function explicit knowledge of implementability, so it knows to search for perhaps subtle but

“usable” predictive patterns, while discarding more prominent but very costly predictive

patterns. That is, we develop a ML method designed to produce optimal portfolios while
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taking into account realistic frictions from transaction costs of the securities that it trades.

Our solution also gives rise to a new measure of “economic feature importance” that captures

which characteristics provide the most investment value in a risk-adjusted terms and net of

trading costs.

Our approach generalizes Gârleanu and Pedersen (2013) in three important ways. First,

while Gârleanu and Pedersen (2013) assume that expected price changes are linear functions

of a set of signals, we allow expected returns to be a fully general function of the signals, open-

ing the door for flexible non-linear ML. Second, our setting is based on stationary returns,

not stationary price changes, solving a vexing problem in the portfolio choice literature and

providing new coherence to empirical analysis over long horizons.1 Third, while Gârleanu

and Pedersen (2013) take the data generating process as given, we integrate the estimation

process into the optimization process via ML, showing the practical and empirical power of

our method.

To understand the difference between our approach and a typical use of ML in finance,

note that the latter takes a two-step approach: First, find a function of characteristics

that predicts gross returns; and, second, use the resulting forecasts to build portfolios. This

typical approach abstracts from transaction costs and turnover, and the resultant investment

strategies produce negative returns net of transaction costs.

Our approach builds transaction costs directly into the objective function, thus ensuring

that the algorithm learns about usable predictability. One element of usable predictability

is that it is relevant for large stocks with low transaction costs. Another important element

is alpha decay, that is, how persistent a predictor is. With transaction costs, whatever you

buy today you will likely own for a while because the trading costs encourage as you to only

slowly enter or exit positions. Naturally then, understanding the expected return both now

and in the further into the future is relevant.

Empirically, we find that the optimal ML predictor of near-term returns is indeed different

from the optimal ML predictor of returns far into the future. In other words, if fh is the

1 Gârleanu and Pedersen (2013) show that the portfolio problem simplifies by looking at numbers of
shares and price changes because this sidesteps the issue of portfolio growth that has plagued the literature.
Portfolio growth is the issue that, if you put 10% of your wealth in IBM stock today, then you will not have
10% of your wealth in IBM next period before trading – because of the price change of IBM and other stocks.
Working with numbers of shares sidesteps this issue (number of shares only changes when you trade), but
the cost is that profit is shares times price changes, so the model cannot be specified in terms of percentage
returns, making empirical analysis difficult. We have found a way to work with the empirically relevant units
and preserve tractability via an approximately optimal solution.
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function that best predicts returns h months into the future, Et[ri,t+h] = fh(sit), then this

function is different across h. Given that the standard ML approach uses only f1, we see

that it misses the information contained in fh at other horizons, h > 1.

One way to implement our approach is to forecast returns across many time horizons

h = 1, 2, ..., then to use all of the predictive functions, fh, appropriately discounted given

risk, risk aversion, and the form of the trading cost function. However, this approach requires

a highly complex ML formulation to accommodate all predictive functions at once. Using

this approach either leads to serious technical challenges (like massive computing costs) or

requires cutting important corners.

Our preferred approach instead learns directly about portfolio weights instead of expected

returns.2 This approach is simple and delivers an essentially closed-form solution to the

highly complex portfolio problem in a single step!

To evaluate the performance of our method, we propose that portfolio choice methods and

ML predictions are evaluated based on the net-of-cost investment opportunities that they

produce. Indeed, a fundamental insight in portfolio choice is that investors can depict their

investment opportunity set as all the achievable combinations of risk and expected return,

giving rise to the “efficient frontier” depicted in most finance textbooks as the tangency

line to the hyperbola generated by risky investments. The textbook frontier is drawn in

a frictionless setting that abstracts from trading costs, but real-world investors care about

their net return. What does the frontier look like when we take trading costs into account?

Panel A of Figure 1 illustrates frontiers for various methods that we study. The baseline

for comparison is the cost-agnostic Markowitz-ML solution and the hyperbola of risky invest-

ments – both in gross terms– that is, our implementation of the textbook frontier using ML.

Specifically, these portfolios use ML to build stock-level expected returns, use the academic

analogue of Barra to build a covariance matrix, and then forms ex ante efficient portfolios

from these two inputs. Figure 1.A plots the portfolios’ realized out-of-sample performance.

As seen in the figure, while the Markowitz solution is tangent to the hyperbola in a textbook

analysis with known means and variances, the Markowitz solution is not exactly tangent in

our out-of-sample analysis. In any event, the Markowitz portfolio performs very well out-of-

sample, delivering a Sharpe ratio of roughly 2.0 per annum. But this is in gross terms. The

2This idea builds on Brandt et al. (2009) who propose using portfolio weights that are parametric (linear)
functions of characteristics in a setting without trading costs. We extend their idea to handle the much more
complex portfolio problem with transaction costs and by using ML to learn about the optimal weights.
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Panel A: The Implementable Efficient Frontier: By Portfolio Method
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Figure 1: The Implementable Efficient Frontier: Risk vs. Return Net of Trading Costs

Note: Panel A shows the implementable efficient frontier for different portfolio methods with a wealth of
$10B by 2020. The dashed lines show indifference curves. The dotted hyperbola is the mean-variance frontier
of risky assets without trading costs, implemented by estimating risk and expected return separately, out-
of-sample. The grey line is the Markowitz-ML efficient frontier before trading cost. After trading costs,
Markowitz-ML and portfolio sort have downward bending frontiers as these methods are not implementable.
Static-ML produces a positive net Sharpe, but negative utility, but it works well with an extra tuning
layer, denoted Static-ML∗. Our Portfolio-ML works significantly better, out-of-sample. Panel B shows the
implementable efficient frontier at different wealth levels. The dotted hyperbola is the same mean-variance
frontier as in Panel A. The blue line is the optimal portfolio of risky and risk-free assets for an investor with
zero wealth, corresponding to no trading costs, estimated using our Portfolio-ML method for different relative
risk aversions. The blue line would be the tangency line to the hyperbola in a standard in-sample textbook
analysis, but it is not exactly tangent out-of-sample. The lower lines illustrate the mean-variance frontiers
with larger wealth levels, also estimated using Portfolio-ML. In both panels, the relative risk aversions are
1 (circle), 5 (triangle), 10 (square), 20 (plus), and 100 (boxed cross) and the sample period is 1981-2020.
Further details are provided in Section 5.2.
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portfolios turnover is enormous and the textbook frontier is non-implementable in practice.

The other lines in Figure 1 show our concept of an “implementable efficient frontier,”

that is, the achievable combinations of risk and expected return, net of trading costs. Fo-

cusing first on the Markowitz portfolio, we see that its net-of-cost, implementable frontier

immediately dives into negative expected return territory as soon as it moves away from a

100% risk-free allocation, as seen in the bottom curve in Panel A. The shape of the imple-

mentable efficient frontier may be surprising: Whereas the textbook frontier is a straight line

when increasing the allocation to the risky securities while reducing the risk-free allocation

(or applying leverage), the true implementable frontier bends down because larger positions

incur larger transaction costs. Said differently, we show that the net-of-cost Sharpe ratio

declines along the implementable efficient frontier.

To understand the source of the problem for Markowitz-ML at a deeper level, the fea-

ture importance of this portfolio reveals the culprit: excessive reliance on fleeting small-scale

characteristics (e.g., 1-month reversal for small stocks), which bear high turnover, high trad-

ing costs, and result in poor net returns. Further, Panel A of Figure 1 also shows that a

standard “portfolio sort” used in the literature is also not implementable.

The difficulty of the standard portfolios from the literature is noteworthy, but it is also

interesting to compare our approach to a more sophisticated alternative that may be used by

some large investors. This sophisticated alternative first uses ML to build expected returns

(agnostic of trading costs), then in an auxiliary second-stage optimization takes transaction

costs into account to build portfolios. This “Static-ML” approach delivers a positive net

Sharpe, but delivers a lower utility than putting all the money in the risk-free asset, as seen

from the indifference curves in Figure 1.A.

To create a more difficult benchmark to beat for our preferred method (Portfolio-ML), we

further enhance the standard approach by adding a number of extra hyper-parameters that

improve performance by adjusting its scale in various ways. We refer to this approach as

Static-ML∗, where the “∗” indicates that we use an extra tuning stage. Static-ML∗ performs

well, delivering high utility as seen in Figure 1.

Despite that Static-ML∗ is a sophisticated multi-stage approach that is much more highly

parameterized than our Portfolio-ML method, our Portfolio-ML method nevertheless signifi-

cantly outperforms Static-ML∗. To understand why Static-ML∗ underperforms our approach,

note that the first-stage ML procedure produces expected returns that are dominated by
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short-term signals, and this method does not take into account which predictors are per-

sistent and which have quick alpha decay. The second-stage optimization reduces turnover,

especially for small stocks, which leads to a much better performance than portfolios that

ignore transaction costs. However, this static approach can nevertheless be improved by

recognizing the dynamic nature of the portfolio using a method that is sensitive to how

expected returns vary across several return horizons (i.e., alpha decay).

In other words, our Portfolio-ML methods delivers out-of-sample net-of-cost returns that

outperform a highly sophisticated alternative by roughly 20% in Sharpe ratio terms and

60% in utility terms. Further, the feature importance across signals changes when we take

transaction costs into account. While naive methods are highly influenced by short-term

reversal signals, our method seeks to optimally blend return predictability across multiple

future horizons, especially for liquid stocks, which leads to value and quality earning the

highest feature importance.

Panel B of Figure 1 draws the implementable efficient frontier using our Portfolio-ML

at different levels of wealth or asset under management (AUM). Interestingly, while the

textbook efficient frontier is the same for all investors, the implementable efficient frontier

depends on the investor’s size via the implied trading costs. Indeed, we see that larger

investors face worse (i.e., lower) efficient frontiers that “cut into” the hyperbola.

As an interesting benchmark, the top line shows the Portfolio-ML strategy when trading

costs are nearly zero since the investor has an AUM near zero. This implementable frontier

is obviously good due to the near-zero trading costs, but we note that such a sophisticated

ML-based trading is hardly feasible for small investors in the real world. 3

The frontier at each wealth level shows that the set of optimal implementable portfolios

is strictly worse for higher AUM investors. This degradation happens for two reasons. First,

trading a larger portfolio simply incurs higher market impact cost. However, the investor can

partly mitigate direct transaction costs by trading less, but this increases opportunity costs.

Indeed, an investor with larger AUM internalizes price impact from their trades, and this

leads the investor to tilt away from highly predictive but costly-to-trade stocks and signals.

3 The strategies that we develop would be difficult to implement for small investors as they require
real-time data on many characteristics across more a thousand stocks, computation of predictive signals,
implementation of ML models, and infrastructure for continual updating and trading of these models. Hence,
the methods are most relevant for investors large enough to have a staff that can perform these tasks, but,
given such capabilities, the implementable investment opportunity set is worse for larger AUM as shown in
Figure 1.B.
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Large cost-aware investors opt to forego some predictability in order to hold trading costs

at bay.

Our paper is related to several large literatures. The first applies machine learning meth-

ods to enhance return prediction and enhance portfolio performance, including Gu et al.

(2020), Freyberger et al. (2020), Chen et al. (2021), Kelly et al. (2019), Gu et al. (2021),

Jensen et al. (2022), and Han et al. (2021) in US equity markets; Choi et al. (2021), Leip-

pold et al. (2022), and Cakici and Zaremba (2022) in international equity markets; and Kelly

et al. (2022), Bali et al. (2022), and Bali et al. (2021) in bond and derivative markets. Re-

cent empirical papers point out that trading strategies based on these factors, as well as the

literature on machine learning in asset pricing cited above, involves large transaction costs

in practice. This literature includes Li et al. (2020), Chen and Velikov (2021), and Detzel

et al. (2021). Motivated by these papers, we develop a flexible method of portfolio optimiza-

tion that lends itself to ML while directly confronting the implementability challenge and

explicitly incorporating transaction costs into the ML-based portfolio optimization problem.

The second related literature extends the frictionless paradigm of Markowitz (1952) to

study portfolio choice in the presence of transaction costs. Constantinides (1986) and Davis

and Norman (1990) analyze settings with a single security, where returns are not predictable.

Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) numerically study a security with

predictable returns and transaction costs. Gârleanu and Pedersen (2013) derive an explicit

portfolio solution with multiple assets with predictable returns and transaction costs when

returns are driven by a factor model. Gârleanu and Pedersen (2016) extend this to more

general dynamics in continuous time and Collin-Dufresne et al. (2020) extend the model to

include different liquidity regimes. Our contribution is to derive optimal portfolio rules based

on stationary dynamics of returns (rather than dynamic programming with stationary price

changes, as in the literature) and fully general functional forms for return predictability,

while incorporating an arbitrarily large set of predictors.

In summary, we provide a theoretical bridge between portfolio optimization and machine

learning with powerful empirical results.
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1 Model and the Implementable Efficient Frontier

We consider an economy with N securities traded in discrete time indexed by t = ...,−2,−1,

0, 1, 2, .... The return of asset n from time t to t + 1 is given by rf
t+1 + rn,t+1, where rf

t+1 is

risk-free rate and rn,t+1 is the asset’s excess return. The vector of all assets’ excess returns

is denoted rt+1.

An investor observes a number of characteristics (or signals) for each security, denoted

sn,t ∈ RK , for example each asset’s valuation ratio, momentum, size, and so on. The

characteristics of all assets are collected in the matrix st ∈ RN×K , and we assume that st

and rt are stationary and ergodic. The signals st fully characterize the investor’s information

about returns in the sense that

rt+1 = μ(st) + εt+1 (1)

where the conditional mean μ(st) = Et[rt+1] and variance Σ(st) = Vart[rt+1] = Vart[εt+1] are

bounded Borel-measurable functions of st with Σ being positive definite.

The investor can be seen as a professional asset manager such as a hedge fund. The

investor has wealth or assets under management (AUM) given by wt at time t. The asset

manager’s AUM grows at a stochastic rate, gw
t , so that wt+1 = wt(1 + gw

t+1), which generally

depends on performance and on how clients take money in and out of the fund, as specified

in Section 1.2. The investor must choose how much capital, π$
n,t, to invest in each asset or,

equivalently, choose the fraction of the capital invested in each asset, πn,t = π$
n,t/wt. This

portfolio choice implies a dollar profit before transaction costs at time t + 1 of

dollar profit before t-costst+1 = (rf
t + rt+1)

′π$
t + (wt − 1′Nπ$

t )r
f
t = wt(r

f
t + r′t+1πt) (2)

where wt − 1′Nπ$
t is the amount of money in the risk-free money market account and 1N is

a vector of ones. The corresponding return before trading costs, net of the risk-free rate is

rπ,gross
t+1 =

dollar profit before t-costst+1

wt

− rf
t = r′t+1πt (3)

8
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1.1 Trading Costs, Net Returns, and Portfolio Growth

The investor faces transaction costs due to her market impact. Specifically, if the investor

chooses to trade dollar values given by τt ∈ RN at any time t, then this trade leads to a market

impact of 1
2
Λtτt, where Λt ∈ RN×N is a multivariate version of “Kyle’s Lambda,” which is

symmetric and positive semi-definite such that transaction costs are non-negative and it may

vary as a function of time and the state st of the market.4 The resulting transaction cost is

the product of the trade size and its market impact, that is,

dollar t-costst =
1

2
τ ′
tΛtτt . (4)

To determine the trade size, note that the dollar position π$
n,t−1 bought at time t − 1 has

grown in value to π$
n,t−1(1 + rf

t + rn,t). The old dollar position has grown due to the return

of the asset (or, said differently, the price change). Hence, the vector of all dollar trade sizes

is

τt = π$
t − diag(1 + rf

t + rt)π
$
t−1

= wtπt − wt−1 diag(1 + rf
t + rt)πt−1

= wt (πt − gtπt−1) ,

(5)

where diag(v) is a diagonal matrix with the vector v in the diagonal and

gt = diag

(
1 + rf

t + rt

1 + gw
t

)

(6)

is the growth of portfolio weights at time t. Combining equations (2)–(6), we see that the

return as a fraction of wealth in excess of the risk-free rate and trading costs is

rπ,net
t+1 = rπ,gross

t+1 − TCπ
t = r′t+1πt −

wt

2
(πt − gtπt−1)

′ Λt (πt − gtπt−1) . (7)

where TCπ
t = dollar t-costst

wt
. The portfolio’s return naturally depends on the portfolio weights,

π, but it also depends on the wealth wt even though return is measured in percent of wealth.

This is because trading costs increase by the square of wealth, such that a larger wealth

4The symmetry of Λ is without loss of generality since, if we start with non-symmetric Λ̃, we can define
Λ = 1

2 (Λ̃ + Λ̃′) and note that τ ′Λτ = τ ′Λ̃τ for any τ .

9
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leads to lower portfolio returns after transaction costs. Said differently, a larger investor has

a larger market impact (for the same portfolio weights π), thus receiving lower net returns.

1.2 Objective Function

The investor maximizes her expected mean-variance utility of portfolio excess returns with

relative risk aversion γt:

utility = E
[
Et[r

π,net
t+1 ] − Vart[r

π,net
t+1 ]

]

= E
[
μ(st)

′πt −
wt

2
(πt − gtπt−1)

′ Λt (πt − gtπt−1) −
γt

2
π′

tΣ(st)πt

]
.

(8)

We make the following assumptions to keep the problem tractable and stationary. First, the

investor has constant risk aversion γt = γ and the risk Σ is constant over time. Second,

the investor’s wealth (or AUM) grows at an exogenous rate (controlled by how clients take

money in and out), such that the wealth remains a stationary part of the overall market.

Specifically, wtΛt = wΛ such that the investor faces constant transaction costs relative to

her wealth. Under these assumptions, the objective function simplifies as follows

utility = E
[
μ(st)

′πt −
w

2
(πt − gtπt−1)

′ Λ (πt − gtπt−1) −
γ

2
π′

tΣπt

]
. (9)

where the investor chooses πt while st and gt are exogenous. In summary, the investor’s

objective is to maximize utility by choosing her portfolio weights πt = π(~st) at each time t

as a function of all the signals received up until that time, ~s = (..., st−2, st−1, st).

This setting is ideally suited for a flexible ML implementation for two reasons: First,

expected returns are driven by a fully general function, μ. Second, the problem is specified

in terms of stationary units, namely percentage returns and portfolio weights as fractions of

wealth, and a stationary objective function.

1.3 The Implementable Efficient Frontier

The utility function depends on risk and expected returns net of trading costs, which gives

rise to the implementable efficient frontier as illustrated in Figure 1 in the introduction.

Specifically, we define the implementable efficient frontier as the combination of volatilities

and expected net returns, (σ, k(σ))σ≥0, such that the expected net return is as high as possible

10
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for that level of risk:

k(σ) = max
πt∈Π

E
[
rπ,net
t+1

]
s.t. E [π′

tΣπt] = σ2 (10)

We are mainly interested in the implementable efficient frontier when taking the maximum

among all possible portfolios Π, but, as seen in Figure 1, we also consider the frontier among

subsets such as standard portfolio sorts.

As an alternative way to compute the implementable efficient frontier, we can derive the

optimal portfolio, πγ , for any level of risk aversion, γ. Based on all these optimal portfolios,

we then compute the corresponding combinations of risk and expected net return:

(
√

E [(πγ
t )′Σπγ

t ], E[rπγ ,net
t+1 ])γ>0 (11)

This generates part of the same implementable efficient frontier, as we show in Appendix B.1.

The only difference is that, while (10) can generate a downward-sloping curve as seen in

Figure 1, (11) only produces a part of the frontier that ends before the downward sloping

part, since an investor never wants the dominated portfolios on the downward-sloping part.

The next result characterizes the frontier.

Proposition 1 (Implementable efficient frontier) (i) The net Sharpe ratio, k(σ)/σ, is

decreasing in σ along the implementable efficient frontier for any level of wealth, w > 0,

when transaction costs are positive, Λ > 0; (ii) There exists a critical σ∗ such that k(σ) is

increasing and concave for σ < σ∗; (iii) The part of the frontier σ ∈ (0, σ∗) is generated by

(11) as
√

E [(πγ
t )′Σπγ

t ] decreases in γ and converges to σ∗ when γ → 0; (iv) If w1 < w2, then

the implementable efficient frontier corresponding to a wealth of w1 is above that of w2.

Interestingly, the implementable efficient frontier has a declining net Sharpe ratio – it is not

a straight line with a constant Sharpe ratio as in the textbook frontier without trading costs.

The declining net Sharpe ratio reflects that investors cannot freely leverage their portfolio

to the desired risk in the presence of trading costs – because more leveraged positions are

larger and incur larger trading costs. Further, a larger investor faces larger trading costs,

leading to a lower frontier. Propositions 2–5 characterize the implementable efficient frontier

at a deeper level via the properties of the underlying portfolios.
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1.4 Empirical Assessments of Portfolios with Trading Costs

The implementable efficient frontier can be compute in-sample or out-of-sample, where the

latter provides a more realistic view of investors’ experience, as discussed in our empirical

analysis. More broadly, the empirical counterpart of our utility function provides a useful

way to evaluate the implementability and economic benefit of any trading strategy:

utility(empirical) =
1

T

T∑

t=1

[
rπ,gross
t+1 − TCπ

t −
γ

2
π′

tΣπt

]
. (12)

The first part of the sum, rπ,gross
t = r′t+1πt, is simply the average return of strategy before

trading costs. This is the standard metric by which most papers in the literature evaluates

trading strategies.

However, real-world trading involves trading costs, so the second term computes the

average trading cost over time, TCπ
t = w

2
(πt − gtπt−1)

′ Λ (πt − gtπt−1). This term is a bit

more complex since it involves both the portfolio last time period, πt−1, and the portfolio

this time period, πt. Specifically, the trading cost is the cost of moving from the grown

old portfolio, gtπt−1, to the new portfolio. So the first two terms together yield the average

return net of trading costs.

Lastly, we need to account for the fact that investors are risk averse. In particular,

two trading strategies that have delivered the same net returns are not the same if one of

them did so at much higher risk. Hence, the last term computes the average disutility of

risk. Rather than looking at the ex ante risk, we can also evaluate the ex post realized

risk, 1
T

∑
t=1

γ
2
(rπ,net

t+1 − r̄π,net)2, where r̄π,net is the average net return. Therefore, our utility

function suggests that the main object of interest is the average return net of trading cost

and risk, which can be seen as the utility flow each time period:

rπ,util
t+1 = rπ,gross

t+1 − TCπ
t −

γ

2
(rπ,net

t+1 − r̄π,net)2 (13)

So, when we evaluate trading strategies empirically, we start with each strategy’s return

gross of costs, rπ,gross
t+1 , then compute its return net of trading costs, rπ,net

t+1 = rπ,gross
t+1 − TCπ

t ,

and finally focus on the return net of trading costs and risk, rπ,util
t+1 .

Recall that the net Sharpe ratio declines along implementable efficient frontier. This

result means that an investor cannot just maximize her Sharpe ratio net of trading costs and
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then choose her risk level – as she could in the standard mean-variance analysis. Instead,

she must directly maximize the return net of trading costs and risk, thus jointly considering

risk, return, and trading costs. Hence, our framework provides useful tools to evaluate the

implementability of trading strategies in general – namely the concepts of the implementable

efficient frontier and the return net of trading cost and risk, rπ,util
t+1 .

2 Solution

We seek to find the optimal portfolio πt that maximizes average returns net of trading

costs and risk (9) or its empirical counterpart (12). The problem is too complex and too

high-dimensional to attack by brute force ML of a general function πt = π(~s) since ~s =

(..., st−2, st−1, st) is simply of too high dimension. So, we need help from economic theory

before we turn to ML.

2.1 Optimal Dynamic Portfolio Choice

To solve for the optimal portfolio strategy, we use the “discount factor” m defined in the next

lemma. To define this discount factor, we use the notation ḡ = E[gt] for the mean portfolio

growth rate as defined in (6), and G ∈ RN×N for the second moments, Gij = E[gitgjt].

Lemma 1 The fixed point equation

m̃ =
(
w−1Λ−1/2γΣΛ−1/2 + I + Λ−1/2((Λ1/2(I − m̃)Λ1/2) ◦ G)Λ−1/2

)−1

(14)

has a unique, symmetric, positive-definite solution m̃ ∈ S(0, 1).5 For this solution, all eigen-

values of Λ−1/2m̃Λ−1/2ḡΛ are between zero and one. Furthermore, m = Λ−1/2m̃Λ1/2 is such

that all eigenvalues of mΛ−1ḡΛ are between zero and one.

We explain in Appendix A.1 how to calculate m, but, for now, let us treat it as a known

constant that depends on the exogenous parameters of the model. Based on this known

constant, we can compute the optimal portfolio strategy. We start with a simpler case,

5 The discount factor m is defined by an equation involving the symbol “◦,” which is an element-wise
matrix product. The element-wise product is also called the Hadamard product, and, for any two matrices
A and B, it is computed as the matrix (A ◦ B)i,j = Ai,jBi,j . Further, S(0, 1) is the set of positive-definite
matrix-valued functions with eigenvalues between zero and one.
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namely where expected returns are constant. Even in this case, the solution is non-trivial,

as is shown by the following proposition.

Proposition 2 (Optimal dynamic strategy: constant expected returns) Let m̃ be the

unique solution to (14) in S(0, 1), and let m = Λ−1/2m̃Λ1/2. When expected returns, μ(st) =

μ̄ ∈ RN , as well as gw
t , rf

t are constant, then the optimal portfolio is given by

πt =
∞∑

θ=0

(
θ∏

τ=1

mgt−τ+1

)
1

w
(I − mΛ−1ḡΛ)−1mΛ−1μ̄ (15)

Furthermore, it is the unique L2-solution to the stochastic difference equation

πt = mgtπt−1 +
1

w
(I − mΛ−1ḡΛ)−1mΛ−1μ̄ . (16)

To understand the intuition for this proposition, note that the optimal portfolio starts with

the old grown position, gtπt−1, and then trades toward a fixed portfolio. To understand the

direction of the trade, it is useful to write the optimal portfolio as

πt = mgtπt−1 + (I − m)A = gtπt−1 + (I − m)(A − gtπt−1) , (17)

where A is the “aim” portfolio. The aim portfolio has the property that, if the investor holds

this portfolio, then the investor optimally does not trade, and otherwise the investor trades

in the direction of the aim with trading speed I − m. We see from Proposition 2 that the

aim portfolio is

A = (I − m)−1(I − mΛ−1ḡΛ)−1 c
1

γ
Σ−1μ̄

︸ ︷︷ ︸
Markowitz

, (18)

where the matrix c is given by

c =
γ

w
mΛ−1Σ (19)

So we see that the aim portfolio is related to the Markowitz portfolio, but adjusted to account

for transaction costs.6

6 We note that, under certain conditions, there is little adjustment in the sense that (I − m)−1(I −
mΛ−1ḡΛ)−1 c is close to I. For example, this happens in the limit when G is close to 11′. As we show in the
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We next present a tractable approximation of the optimal portfolio when the expected

returns are not too large. Specifically, we write expected returns as μ(st) = εμ̃(st), where μ̃

is a given function and ε is a small number that measures the magnitude of expected returns.

Proposition 3 (Optimal dynamic strategy) Let m̃ be the unique solution to (14) in

S(0, 1), and let m = Λ−1/2m̃Λ1/2. With expected returns μ(st) = εμ̃(st) and gw
t = gw +

O(ε), rf
t = rf + O(ε), the optimal portfolio is

πt = mgtπt−1 + (I − m)At + O(ε2) , (20)

where the aim portfolio At at time t is

At = (I − m)−1

∞∑

τ=0

(mΛ−1ḡΛ)τ cEt

[
1

γ
Σ−1μ(st+τ )
︸ ︷︷ ︸

Markowitzt+τ

]

. (21)

This key theoretical result of the paper shows how to choose the optimal portfolio in two

surprisingly simple and intuitive equations. The first equation (20) says that one should

always start from the grown position inherited from last period, and then trade toward an

aim portfolio.

The second equation (21) shows how the aim portfolio depends the current and future

Markowitz portfolios, thus providing an optimal risk-return tradeoff along the path where

these stocks are expected to remain in the portfolio while simultaneously economizing trans-

action costs.7 Proposition 3 generalizes the Gârleanu and Pedersen (2013) portfolio opti-

mization principle, “aim in front of the target,” when facing trading cost frictions. Unlike

Gârleanu and Pedersen (2013), we do not require specific assumptions on return dynamics,

but, instead, allow a general function μ(∙) that predicts returns.

The proposition also leads to several economically intuitive properties as shown next.

Proposition 4 (Trading speed) The eigenvalues of the matrix m are monotone decreas-

ing in G, Σ and γ and increasing in w, in the sense of positive semi-definite order.8

Appendix, when G = 11′, we have ḡ = diag(1), and c = (I − m)2.
7For the convergence of the series (21), it is important that mḡ has all eigenvalues below one in absolute

value. As we show in the Appendix, a stronger claim holds and Λ1/2ḡ1/2mḡ1/2Λ−1/2 is a symmetric, positive
semi-definite matrix with all eigenvalues between zero and one.

8Given two symmetric matrices A,B, we write A ≥ B in the sense of positive semi-definite order if A−B
is positive semi-definite.
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To understand the intuition behind these results, recall from (20) that m is the persistence

of the optimal portfolio, or, equivalently, I −m is the trading speed toward the aim. At the

same time, m also determines how much the aim portfolio weights near-time performance

versus long-term returns, as seen in (21). So, consider what happens when we move to the

right in the implementable efficient frontier in Figure 1 by decreasing risk aversion. This

decreasing risk aversion means that m increases, thus reducing trading speed and making

the aim more focused on persistent signals. In other words, as the investor takes more risk,

trading costs increase, but the investor compensates by trading more slowly toward a more

stable aim. Likewise, an investor with larger wealth w has a lower trading speed because of

larger market impact costs, providing economic intuition for Figure 1.B.

The next proposition considers the limiting portfolios with small are large wealth.

Proposition 5 (Small and large investors) When wealth approaches zero such that trans-

action costs become negligible, w → 0, the discount factor converges as m → 0 and the

optimal portfolio policy converges to the Markowitz portfolio, πt → 1
γ
Σ−1μt.

When wealth grows large, w → ∞, the optimal portfolio diminishes, πt → 0, but the

discount factor m and rescaled portfolio, wπt, and aim portfolio, wAt, converge to finite

limits if Λ is diagonal and ḡi = 1+rf+μi

1+gw > 1 for all i.

Naturally, a tiny investor holds a portfolio close to the Markowitz portfolio because of the

low market impact costs. The limiting behavior as wealth goes to infinity is less obvious:

As wealth growth infinite, the investor ultimately holds almost all wealth in the risk-free

asset as trading a meaningful proportion of wealth in illiquid assets becomes too costly.

However, this result does not mean that the portfolio in dollar terms is not large. Instead,

what happens is that the portfolio measured in dollar terms grows toward a finite limit. In

other words, there is a maximum amount of money that can be made in the market, and, as

wealth growth, the investors ultimately holds this “maximum dollar portfolio.”

2.2 Implementing the Solution with Machine Learning

From a machine learning perspective, Proposition 3 is a powerful result if we assume that

st is Markovian. To see the power of this result, note that the proposition transfers the

ML problem from looking for a general function π all current and past signals to a problem

of looking for a function A(st) of only the current signals. This enormous reduction in
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dimension vastly simplifies the problem. There are dual ways of using machine learning to

implement Proposition 3, which we call “Multiperiod-ML” and “Portfolio-ML,” respectively.

These approaches are designed to find the dynamic optimal portfolio while being aware of

transaction costs in a theoretically consistent manner. We describe each approach in turn.

Multiperiod-ML: Machine Learning about Expected Returns across Horizons

The first approach to apply Proposition 3 empirically is to compute the aim portfolio

using the expected returns across multiple future time periods. To understand this ap-

proach, recall first that μt = Et(rt+1) is the short-term expected return, so that Et[μt+τ ] =

Et[Et+τ [rt+τ+1]] = Et[rt+τ+1] is the current expectation about returns τ periods in the future.

Using this identity, the aim portfolio can be written as

A(st) = (I − m)−1

∞∑

τ=0

(mḡ)τc
1

γ
Σ−1Et[rt+1+τ ] (22)

So, interestingly, the aim portfolio depends on expected returns across all future time hori-

zons.

One approach to apply Proposition 3 empirically is to first use standard ML techniques

to predict returns, but do this for a range of forecasting horizons, thus producing proxies for

Et[rt+1+τ ] for all τ . Using these forecasts, the aim portfolio is given by (22). The resulting

portfolio can be computed recursively using (20), which we call πMultiperiod-ML as it is based

on expected returns over multiple time periods.

While there exist many ML methods that can be used to forecast returns, we focus on a

single method throughout the paper for its unique combination of flexibility and simplicity

(the appendix contains robustness analysis). Specifically, we use random features (RF)

method of Rahimi and Recht (2007) and analyzed in the context of return prediction and

portfolio choice by Kelly et al. (2022). This method is based in the insight that any function

can be approximated arbitrarily well by a linear combination of known auxiliary functions. In

other words, we can write Et[ri,t+1+τ ] = f(si,t)bτ , where f is a known family of functions of the

signals and bτ is a parameter to be estimated (Section 4.2 details our empirical methodology).

The RF method is both powerful to predict returns and easily adaptable to our second

method, discussed next.
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Portfolio-ML: Machine Learning directly about Portfolio Weights

The disadvantage of Multiperiod-ML is that we need to a return prediction model for all fu-

ture return horizons, not just one period ahead. An alternative, and our preferred approach,

learns directly about portfolio weights, rather than the two-step procedure of first predicting

returns and then constructing portfolios. We thus refer to this approach as “Portfolio-ML.”

We use (12) directly as our ML objective, where the optimal portfolio π depends on the

aim A, and then search for the function A that maximizes this objective. This method uses

the insights that (i) we can focus on the aim portfolio A which only depends on current

signals, and (ii) the objective should penalize transaction costs.

To see how this works, note that Proposition 3 shows that the optimal portfolio is a

weighted average of the inherited position and the current aim portfolio via (20). We can

express this result as saying that the current optimal portfolio depends on the current and

past aim portfolios and their growth over time:

πt =
∞∑

θ=0

(
θ∏

τ=1

mgt−τ+1

)

(I − m)A(st−θ) . (23)

So, we can replace π by this expression in the objective function (12), which leaves us the

task of finding the best aim portfolio, A(∙), based on an economic objective function.

In other words, we need to find a general function A(st) that maximizes expected utility.

To do this, we again use the ML insight that any function can be approximated arbitrarily

well by a linear combination of known auxiliary functions. Specifically, we write At = f(st)β,

where f is a set of known functions (random features) of the signals and β ∈ Rp is an unknown

vector of parameters. For example, if portfolio weights were linear in the signals, we could

simply take f to be the identity such that At = stβ. In fact, we take f to be to a set of

random features, just like we did for predicting returns (detailed are in Section 4.2).

So we have boiled the portfolio choice problem down to finding the parameter β, and we

next show how to do that in closed form. Plugging A(st) = f(st)β into equation (23), we

see that the optimal portfolio depends on known elements and the unknown parameter β:

πt =

[
∞∑

θ=0

(
θ∏

τ=1

mgt−τ+1

)

(I − m)f(st−θ)

]

β ≡ Πtβ (24)
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where Πt is defined by the last equation. Using this formulation for πt in the objective (9),

we have

utility =
1

T

∑

t

[
r′t+1πt −

γ

2
π′

tΣπt −
w

2
(πt − gtπt−1)

′ Λ (πt − gtπt−1)
]

=
1

T

∑

t

[
r′t+1Πtβ −

γ

2
β′Π′

tΣΠtβ −
w

2
(Πtβ − gtΠt−1β)′ Λ (Πtβ − gtΠt−1β)

]

=
1

T

∑

t




r′t+1Πt︸ ︷︷ ︸

≡r̃′t+1

β −
1

2
β′ [γΠ′

tΣΠt + w(Πt − gtΠt−1)
′Λ(Πt − gtΠt−1)]︸ ︷︷ ︸

≡Σ̃t

β






≡ ET [r̃′t+1]β −
1

2
β′ET [Σ̃t]β

(25)

So we can maximize utility by maximizing this quadratic equation in the unknown parameter

β. To ensure a robust solution, we add ridge penalty −λβ ′β, yielding the following solution:

Proposition 6 (Portfolio-ML) The aim portfolio can be estimated as A(st) = f(st)βT ,

and the corresponding optimal portfolio, πPortfolio-ML, is given by (24), where

βT = (ET [Σ̃t] + λI)−1ET [r̃t+1] (26)

Amazingly, this approach delivers a closed-form solution for the optimal dynamic portfolio

in light of transaction costs. To find the optimal portfolio, we simply compute the two

“expectations” on the right-hand side of (26) as their sample counterparts seen in (25).

These sample counterparts depend only on data (rt+1, st), known parameters, and the ridge

parameter λ, which is chosen via ML validation as discussed in Section 4.2. With enough

random features and enough time, the estimated portfolio in Proposition 6 asymptotically

recovers the optimal portfolio, as discussed in more detail in appendix (Proposition 9).

2.3 Economic Feature Importance

It is important to determine which characteristics are economically important. To address

this issue, we consider the value function V (s), that is, the maximum utility for a given set

of signals s. We define the importance of any feature n as

ιn = V (s) − V (s−n) (27)
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where s−n is the set of signals s, except that we drop feature n at all times. In other words,

the importance in feature n is the drop in utility when the investor no longer has access to

this information. The following results provides an intuitive characterization of the drivers

of feature importance.

Proposition 7 In the limit when Λ is small, the investor’s steady-state optimal utility is

V (s) = v(s) − c(s) + O(‖Λ‖2), where

v(s) =
1

2
E[Markowitz′t ΣMarkowitzt] , (28)

is value function without transaction costs, and c measures the cost of time-variation in the

Markowitz portfolio:

c(st) =
1

2
E[(Markowitzt+1 − gt+1Markowitzt)

′ Λ (Markowitzt+1 − gt+1Markowitzt)] . (29)

The importance, ιn, of feature n is

ιn = v(st) − v(x−n)
︸ ︷︷ ︸

efficiency loss

− (c(st) − c(x−n))
︸ ︷︷ ︸

cost reduction

+ O(‖Λ‖2) .
(30)

We see that a feature is more important if it is an important contributor to the Markowitz

portfolio (the first term in (30)) and if it is a persistent signal such that it reduces the turnover

and, hence, the transaction costs (the second term in (30)).

This result provides intuition on economic feature importance based on an approximation.

Empirically, we do not rely on this approximation, but, instead, use ML tools to characterize

the economic feature importance (27) as described in Section 5.3.

3 Benchmarks based on Standard Approaches

3.1 Standard Approach: Predicting Returns without T-Costs

The standard approach in the literature is to assume away transaction costs, that is, setting

Λ = 0. In this case, the portfolio problem (9) becomes static in the sense that we can choose

the optimal portfolio πt at time t without regard to what happens at other time periods.

Hence, the standard approach is focused on finding methods to predict returns, and then
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use these return predictions to form a portfolio. For example, we can write the standard ML

prediction problem as seeking to find a function f of stock characteristics sn,t that minimizes

the mean-squared forecast errors for future 1-period (say, 1-month) excess returns rn,t+1:

min
f :RK→R

1

TN

∑

n,t

[rn,t+1 − f(sn,t)]
2 . (31)

This standard approach generates a function that approximates the conditional mean, f(si,t) ∼=

E[ri,t+1|si,t], when returns are stationary across time and assets, and the number of obser-

vations is large. The standard approach to turn such predictions into portfolio weights is to

make factor, πfactor-ML, by going long the top 10% of the assets with the highest predicted

returns f(si,t) while shorting the bottom 10% of the assets.

This simple factor approach ignores risk and transaction costs, but a more sophisticated

method maximizes (9) while assuming zero transaction costs. Using the vector of expected

excess returns μ(st) = (f(s1,t), ..., f (sN,t))
′, the solution to (9) without transaction costs is

πMarkowitz-ML
t =

1

γ
Σ−1μ(st) . (32)

which is an ML-based version of the Markowitz portfolio.

3.2 Static Transaction Cost Optimization

A more sophisticated method is to first estimate the vector of expected excess returns μ(st)

via (31) and then account for a transaction costs in a second step. While this two-step

procedure does not fully account for the dynamic nature of the problem, it serves as an

interesting benchmark for our fully dynamic method. To see how this works, consider the

problem of choosing an optimal portfolio πt given the existing portfolio gtπt−1:

max
πt∈RN

{

π′
tμt −

γ

2
π′

tΣπt −
w

2φ
(πt − gtπt−1)

′Λ(πt − gtπt−1)

}

. (33)

Here, the transaction costs are divided by a “transaction-cost amortisation parameter” φ

to account for the static nature of the problem in an ad-hoc manner. A naive choice of

this parameter is φ = 1, which would mean that the objective (33) compares the returns

earned over the next time period (a “flow” variable) with the transaction costs (a “stock”
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variable) paid today. This comparison is problematic if the portfolio is expected to be held

for many time periods, so having the fudge factor φ is a simple way to address this problem.

In particular, if the portfolio is expected to be held for φ = 6 time periods, say, then we can

amortize the trading cost over these 6 time periods, thus dividing the current transaction

cost by 6.

The solution to the static objective (33) is:

πstatic-ML
t = (γΣ +

w

φ
Λ)−1(μt +

w

φ
Λgtπt−1)

= mstatic gtπt−1 + (I − mstatic) πMarkowitz-ML
t

(34)

where mstatic = (γΣ + w
φ
Λ)−1 w

φ
Λ. So we see that this strategy is a weighted average of the

inherited grown position, gtπt−1, and the current Markowitz portfolio. Said differently, this

strategy always trades in the direction of the current Markowitz portfolio — so Markowitz

is the “aim portfolio” in this static trading cost formulation. This solution is similar to our

optimal portfolio with two exceptions. First, the aim portfolio in the fully dynamic model

is more forward looking, distinguishing persistent signals from those with fast alpha decay.

Second, the dynamic solution uses the utility optimal discount factor, m, rather than mstatic.

4 Data and Empirical Methodology

4.1 Data and Inputs to the Portfolio Choice

Returns and Investment Universe

We use the dataset from Jensen et al. (2022), a publicly available dataset and replication code

of stock returns and characteristics, with the underlying return data sourced from CRSP and

accounting data from Compustat.9 We restrict our sample to US common stocks (shrcd: 10,

11, and 12) traded on AMEX, NASDAQ or NYSE (exchcd: 1, 2, or 3) with a market cap

above the 50th percentile of NYSE stocks (denoted as large-cap stocks). For example, the

group of large-cap stocks consists of the largest 1204 stocks at the end of 2020. This sample

is deliberately conservative; the effects of trading cost optimization will be magnified among

small, micro, and nano cap stocks which are subject to notably larger trading costs. Our

9 The data, code, and documentation are available at https://github.com/bkelly-lab/
ReplicationCrisis/tree/master/GlobalFactors.
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sample runs from 1952 to 2020, where the first part of the sample is used only for estimation

and our out-of-sample backtests run from 1981 to 2020.

Signals

To predict returns, covariances, and portfolio weights, we use 115 stocks characteristics (or

features) studied in Jensen et al. (2022).10 We standardize each feature in each month by

mapping the cross-sectional rank into the [0,1] interval. We set missing values to 0.5 but

require at least 57 non-missing features and non-missing market equity at the beginning of

the month.

Investor Wealth and Optimization Methods

We assume that the investor wealth grows according to the realized market return, wt =

wt−1(1 + Rm,t), such that the size of the investor is a stable share of the market. This

assumption means that the investor withdraws money when the portfolio has outperformed

the market and vice versa when the portfolio has underperformed. For interpretability, we

label each investor size by the corresponding wealth level by the end of 2020. In our baseline

specification, the investor’s wealth evolves with the market return such that the final wealth

by 2020 is $10 billion.

We assume that the investor optimizes the portfolio each month using either Portfolio-

ML, Multiperiod-ML, Static-ML, portfolio sort, or Markowitz-ML, as described below in

Sections 4.2–4.3. These portfolio choice methods depend on trading costs and risks, which

we estimate each month as described next. We note that, while we re-estimate trading costs

and risks each month, the investor behaves as if trading costs and risk are constant over

time. This assumption simplifies the ML problem and, while it may hurt out-of-sample

performance that trading costs and risk do change over time, we find that the methods

perform well nevertheless.

Trading Cost Matrix

Trading cost measured in dollars are given TCt = 1
2
τ ′
tΛτt for any vector of dollar trades,

τt. In our empirical analysis, we let the trading cost matrix be diagonal and calibrate it

10Jensen et al. (2022) studies 153 features. However, here we exclude features with poor coverage early in
the sample. Table C.1 shows an overview of the features.
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based on the estimates in Frazzini et al. (2018). Specifically, we assume that the (expected

and realized) market impact, 1
2
Λτt, is 0.1%, when trading 1% of the daily dollar volume in

a stock. This assumption means that the ith diagonal entry in Λt, denoted Λi,t, satisfies

0.001 = 1
2
Λi,t0.01Vi,t, which means that

Λi,t =
0.2

Vi,t

, (35)

where Vi,t is the expected daily dollar volume of stock i at time t. For example, trading

$5 million over a day, in a stock with a daily volume of $500 million moves the price by

1
2

0.2
$500m

×$5m = 0.1%, leading to a transaction cost of of 1
2

0.2
$500m

× ($5m)2 =$5000. We follow

Frazzini et al. (2018) and assume that the expected daily volume is equal to the average

daily dollar volume over the last six months.

Variance-Covariance Matrix

We need to estimate of the variance-covariance matrix, Σ t = Vart(rt+1), at each time in a

way that guarantees it to be positive definite and is broadly consistent with our estimates

of expected returns. To accomplish these goals, we use a factor model similar to the MSCI

Barra risk model. Specifically, security characteristics are used as observable factor load-

ings and latent factor returns are estimated via a simple regression (MSCI Barra, 2007).11

Specifically, each trading day, we estimate a cross-sectional regression of stock returns on

stock characteristics

ri,t+1 = S ′
i,tf̂t+1 + εi,t+1, (36)

and the regression coefficients, f̂t+1, are the estimated factor returns. Here, the observed

characteristics, Si,t, consist of a constant (the number one) and the 13 cluster characteristics

from Jensen et al. (2022). These cluster factors capture the main features of return predict-

ing factors, but does so in a simplified way to have a tractable variance-covariance matrix

(simplified by reducing more than 100 factors to 13 clusters and by using a linear factor

model rather than ML). Specifically, each stock’s cluster characteristic, Si,t, is its average

rank of the characteristics in the cluster, standardized by subtracting the mean and dividing

11The procedure of fixing factor loadings and estimating factor returns differs from models such as Fama
and French (1993), that fix factor returns and estimate loadings.
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by the standard deviation, each month. This standardization implies that the associated

factors are long-short and dollar neutral and, at the same time, the constant corresponds to

an equal-weighted market factor. This structure means that the variance-covariance matrix

is:

Σ̂t = StVart(f̂t+1)S
′
t + diag (Vart(ε̂i,t+1)) . (37)

Here, Vart(f̂t+1) is estimated as the exponentially-weighted sample covariance matrix of fac-

tor returns over the past ten years of daily observations. We weight observations with expo-

nential decays to put more weight on recent observations and, since correlations move slower

than variances, we use a half-life of 378 days for correlations and 126 days for variances. 12

Lastly, each stock’s idiosyncratic variance, Vart(ε̂i,t+1), is estimated using an exponentially-

weighted moving average of squared residuals, εi,s, from (36) with a half-life of 126 days. We

require at least 200 non-missing observations within the last 252 trading days, and we use the

median idiosyncratic variance within size groups to impute missing observations for stocks

with less than 200 valid observations.

4.2 Machine Learning Methodology

Machine Learning via Random Fourier Features

We use the machine learning method called random feature (RF) regression from Rahimi

and Recht (2007).13 To understand the intuition behind this method, note that any function

f(st) can be approximated as

f(si,t) ≈ RF (si,t)β, (38)

where β ∈ Rp is a vector of parameters and RF consists of random features. The RF method

transforms the original features using random weights and a non-linear activation function.

There are several ways to generate random features, but we use so-called random Fourier

12Specifically, observations j days from t gets a weight of wt−j = c0.5j/half-life where c is a constant ensuring
that the weights sum to one.

13 See Kelly et al. (2022) for a detailed analysis of the theoretical properties of this RF methodology in
the context of return prediction.

25

Electronic copy available at: https://ssrn.com/abstract=4187217



features, which essentially approximates a function via its Fourier transformation. 14 While

this may sound complicated, it is straightforward to do in practice. We first simply draw

some random Normal vectors, wj ∈ R115 ∼ iidN(0, η2I) for j = 1, ..., p/2. Then, for each

j, we create a pair of new features, sin(s′i,tw
j) and cos(s′i,tw

j), where the sine and cosine

functions can capture non-linearities. We finally collect all these p random features:

RF (si,t) = [sin(s′i,tw
1), cos(s′i,tw

1), . . . , sin(s′i,tw
p/2), cos(s′i,tw

p/2)]′.

The RF method thus involves a vector parameters β, estimated via a ridge regression, and

two hyper-parameters, namely the number of random features p and the standard deviation

of the random weights, η. We describe below how we choose these hyper-parameters via

tuning.

Machine Learning about Expected Returns: Multiperiod-ML

We estimate expected returns using a ridge regression on the RF transformed features. The

resulting model can be viewed as a two-layer neural network with non-optimized weights in

the first layer (the random features) and optimized weights in the final layer (the betas). We

predict returns over three different horizons. The first model predicts excess returns over

month t + 1, the second model predicts the average excess return over month t + 2 to t + 6,

and the third model predicts the average excess return over month t + 7 to t + 12.

Machine Learning Directly about the Optimal Portfolio: Portfolio-ML

Our Portfolio-ML learns about the aim portfolio via the relation

At = f(st)β = diag

(
1

σi,t

)

RF (st)β, (39)

where β ∈ RK is a parameter, we scale each asset’s position by its volatility, σi,t =
√

Σt,ii,

and RF consists of random Fourier features as described above. Note the objective for

estimation is no longer return prediction, but utility maximization, and the solution is given

in Proposition 6.

14The approach we use to generate random features is motivated by Sutherland and Schneider (2015),
who find that it is preferable to alternative schemes with Gaussian weights.
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Table 1: Hyper-Parameters

Hyper-parameter Method

First tuning layer, h Portfolio-ML Multiperiod-ML Static-ML

Ridge penalty, λ {0, e4, e5, . . . e8} {0, e−10, e−9.8, . . . e10} {0, e−10, e−9.8, . . . e10}

#random features, p {26, 27, 28, 29} {21, 22, . . . , 210} {21, 22, . . . , 210}

Std of weights, η {e−3, e−2} {e−4, e−3, e−2, e−1} {e−4, e−3, e−2, e−1}

Second tuning layer, h∗ Multiperiod-ML∗ Static-ML∗

Adjustment to mean, u {0.25, 0.50, 1.00} {0.25, 0.50, 1.00}

Adjustment to variance, v {1, 2, 3} {1, 2, 3}

Adjustment to t-cost, k {1, 2, 3} { 1
1 , 1

3 , 1
5}

Note: The table shows the hyper-parameter space we use for portfolio tuning. For Portfolio-ML, λ is a
ridge penalty, p is the number of random features, and η is the standard deviation of random weights. For
Multiperiod-ML∗ and Static-ML∗ we add a second tuning layer; u shrinks the expected return vectors as
Et[rt+τ ]∗ = uEt[rt+τ ], v increases stock variances as Σ∗

t = Σt + v diag(σt), and k controls trading cost as
Λ∗

t = kΛt.

4.3 Portfolio Tuning

The empircal implementation relies on several hyper-parameters as summarized in Table 1.

Consider first how we tune our Portfolio-ML method. This method runs a ridge regression

on RF transformed features, so we need to find the ridge parameter λ, the number of random

features p, and the standard deviation of random weights η, collected in h = (λ, p, η).

We tune h as follows. For each h, we compute a “validation backtest” in each year

starting in 1971. Specifically, in each year y ≥ 1971, we compute the optimal beta (26) for

that h using monthly data from 1952 to y − 1. Using this beta, we compute the optimal

portfolio for each month in year y, and repeat this process each year until the end of our

sample. This process creates – for each h – a backtest from 1971 onwards. These validation

backtests are out-of-sample with respect to beta, but we still need to pick h.

Our “actual backtest” starts in 1981. In each year from 1981 onwards, we pick the hyper-

parameter h with the highest realized utility in the validation backtest up until now (i.e.,

from 1971 until the previous year). Using this h and the corresponding beta, we compute

the optimal portfolio over the next year, which is therefore truly out-of-sample with respect

to both h and beta.

For the other methods (Multiperiod-ML, Static-ML, Markowitz-ML, portfolio sort), we

first fit a model that predicts return, and then compute the optimal portfolio. We predict

27

Electronic copy available at: https://ssrn.com/abstract=4187217



returns using a similar ML method based on random features using the tuning parameters

h shown in Table 1.

We show in the next section that Portfolio-ML not only outperforms Multiperiod-ML and

Static-ML, the latter methods in fact deliver negative utility to the investor, out of sample.

This disappointing performance happens even though the ML model to predict returns works

reasonably well in terms of how it ranks stocks. The problem is that the resulting portfolios

tend to be poorly scaled because out-of-sample returns and risks for optimized portfolios

do not match the scale of their ex ante expected versions. So, this finding already shows

the power of the Portfolio-ML method, namely its focus on the economic objective and on

directly choosing portfolio weights, which immediately leads to a reasonable scaling of the

portfolio with strong performance.

Nevertheless, we want to give the other methods a chance to compete with the Portfolio-

ML method. To make these alternative methods better, we add an additional layer of

portfolio tuning to Multiperiod-ML and Static-ML, where we add three additional tuning

parameters: u, v, k. In particular, u shrinks the expected return vector towards zero, v

increases the diagonal of the covariance matrix, and k increases the trading cost matrix:

E∗
t [rt+τ ] = uEt[rt+τ ],

Σ∗
t = Σt + v diag(σt),

Λ∗
t = kΛt.

(40)

To estimate two layers of hyper-parameters, we proceed in the following way (which is rather

involved, but, again, Portfolio-ML avoids this complexity). In the first layer, we produce a

time series of out-of-sample expected returns based on h = (λ, p, η) and, in the second layer,

we produce optimal portfolios based on h∗ = (u, v, k). For the first layer, we update the RF

models based on h each decade using the past 30 years of data. We estimate the random

features models with each set of hyper-parameters over the first 20 years and pick the ones

that lead to the lowest mean squared error over the last 10 years. After finding the optimal

hyper-parameters h, we re-train the model using all 30 years of data.

In the second layer of portfolio tuning, we update the hyper parameters h∗ each year

stating in 1981 by choosing the hyper-parameters that led to the highest utility since 1971.

This two-layer approach is based on some experimentation to make these methods work,
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which gives these methods an advantage, but, again, our main finding is that Portfolio-ML

nevertheless performs even better. Figure C.1 in appendix shows the optimal parameters

over time.

5 Empirical Results

This section reports our empirical results for each of our methods of portfolio choice. In our

baseline specification, we consider an investor with a wealth of $10 billion by the end of 2020

and a relative risk aversion of 10, but we also consider other levels of wealth for comparison.

5.1 Out-of-Sample Portfolio Performance

Table 2 shows the out-of-sample performance for each method from 1981 to 2020. Judged by

the performance before trading cost, the Markowitz-ML method is the clear winner with an

impressive gross Sharpe ratio of 2.00. This finding shows that our methods for predicting risk

and return perform well out-of-sample. The gross performance of the trading cost-aware port-

folio choice methods (Portfolio-ML, Multiperiod-ML, Static-ML, Multiperiod-ML ∗, Static-

ML∗) is substantially lower than that of Markowitz-ML because these methods exploit fewer

and less extreme trading opportunities to save on trading costs. Interestingly, several of

these methods nevertheless realize a higher gross Sharpe ratio than the standard portfolio

sort, presumably because they utilize information about risk as well as return.

After accounting for trading cost, the net return (and net Sharpe ratio) of the Markowitz-

ML and portfolio sort methods are highly negative. Both methods trade too aggressively

and are infeasible for the investor that we consider. In contrast, the trading cost-aware

methods still deliver positive net Sharpe ratios, reaching 1.38 for Portfolio-ML, an impressive

performance given that we report out-of-sample results and account for the trading cost of

a large investor with $10 billion invested.

Turning to our main objective, which is to maximize the realized utility (12), Table 2

shows that the Portfolio-ML approach delivers the highest realized utility. In contrast, the

methods in the top panel deliver negative realized utility. This top panel shows our results

when all methods are fitted with a single layer of tuning (estimating portfolio weights or

expected returns via random feature ML). While Porfolio-ML performs well with a single

layer of tuning, the other methods deliver negative utility.
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Table 2: Out-of-Sample Performance Statistics

Method R Vol. SRgross TC R-TC SRnet Utility Turnover Lev.
One tuning layer
Portfolio-ML 0.20 0.14 1.43 0.008 0.19 1.38 0.095 0.32 3.60
Multiperiod-ML 0.32 0.34 0.95 0.182 0.14 0.41 -0.437 1.47 12.70
Static-ML 0.28 0.27 1.06 0.033 0.25 0.94 -0.106 0.76 11.21
Portfolio Sort 0.17 0.15 1.10 1.972 -1.81 -11.87 -1.921 2.60 2.00
Markowitz-ML 3.12 1.56 2.00 + - - - 56.33 53.15
Two tuning layers
Multiperiod-ML∗ 0.11 0.08 1.33 0.014 0.09 1.16 0.060 0.40 2.50
Static-ML∗ 0.13 0.10 1.36 0.024 0.11 1.11 0.060 0.61 3.22

Note: The table shows the out-of-sample performance of the various portfolio choice methods, rebalanced
monthly 1981–2020. Here, R is excess return; Vol. is volatility, SRgross is the Sharpe ratio before trading
cost; TC is trading cost, R-TC is excess return minus trading cost; SRnet is the Sharpe ratio after trading
cost; Utility is the realized utility computed as the excess return after trading cost minus one-half times the
assumed risk aversion of 10 times the realized portfolio variance; Turnover is the monthly average of the sum
of absolute changes in portfolio weights; and Lev. is the portfolio leverage computed as the monthly average
of the sum of absolute portfolio weights. All items except turnover and leverage are annualized. Portfolio-ML
and Multiperiod-ML are the two dynamic trading cost optimization methods motivated by Proposition 3,
Static-ML is the static trading cost optimization method from (34), Portfolio sort goes long/short the 10% of
stocks with the highest/lowest 1-month expected return, and Markowitz-ML is the optimal portfolio absent
trading cost from (32). For methods with one tuning layers, we search for the optimal hyper-parameters for
a ridge regression implemented on RF transformed features. For Multiperiod-ML∗ and Static-ML∗, we add
a second tuning layer where we modify expected return, covariance, and trading cost inputs. An entry of
“+” or “−” reflects an extremely high or low value.

It is instructive to consider why Static-ML with a single layer of tuning delivers a negative

utility despite its positive net Sharpe ratios. Figure 1.A shows that the indifference curve

corresponding to Static-ML goes below the origin, thus yielding a negative utility. This

happens because this method realizes too high risk relative to its ex ante risk estimate. This

is seen in Figure 1.A from the fact that the indifference curve crosses the frontier, rather

than being tangent (we note that the Static-ML frontier is not drawn, but has similar shape

as that of Static-ML∗). In other words, two factors determine the realized utility (i.e., the

return net of trading costs and risk), out of sample: (i) how good the implementable efficient

frontier is, and (ii) whether the method places the investor correctly on the frontier based on

the investor’s risk aversion. While Static-ML produces a frontier that could deliver positive

utility, it places the investor too far to the right on the frontier, thus realizing a negative

utility.

To test Portfolio-ML even further, we also compare its performance to versions of the

other methods where we give these other methods an extra “advantage” via a second layer

of tuning as described in the Section 4.3. This second layer of tuning is designed to improve
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the scaling of the portfolio, thus helping these methods to place the investor more correctly

on the implementable efficient frontier.

Table 2 shows that the two-layer versions outperform the one-layer versions across all

performance statistics. This result highlight that the second tuning layer is crucial for these

methods based on ML about expected returns. Nevertheless, our Portfolio-ML continues to

outperform these methods. This outperformance of Portfolio-ML relative to the two-layer

methods shows a benefit of learning directly about portfolio weights, namely that the ML

algorithm immediately searches for a well-scaled portfolio that delivers high utility – so no

additional tuning layer is needed.

As seen from the notation in Table 2, we add a superscript “∗” to the implementations

with two tuning layers. In the remainder of this section, we focus on the comparison between

Portfolio-ML and the two-layers alternatives, Multiperiod-ML∗ and Static-ML∗, studying

their performance over time and the statistical significance of their performance differences.

Figure 2 shows that the outperformance of Portfolio-ML in terms of net returns and

realized utility is consistent over time. The outperformance of Portfolio-ML is all the more

remarkable when considering that the other methods were given the advantage of a second

level of tuning to make them perform better. Figure 2 also shows some interesting time-series

patterns in performance. For example, we see that several of these methods have relatively

lower performance during the dot-com bubble in 2000, the global financial crisis in 2008, and

the COVID-19 crash in 2020.

One of the reasons behind the outperformance of Portfolio-ML is that this method keeps

trading costs lower. This lower trading cost is achieved via a lower monthly turnover of 32%

relative to 40% and 61% for Multiperiod-ML∗ and Static-ML∗, respectively, as seen from

Table 2. Figure 3 shows how the ex-ante volatility, leverage, and turnover evolve over time,

again showing that Portfolio-ML tends to have a lower turnover.

To visualize an example of some specific portfolio weights over time, Figure 4 depicts

how the portfolio weights for Apply and Xerox stocks evolve for each method. Portfolio-ML

adjusts its positions more slowly than the other methods, especially for the less liquid stock

(Xerox).

Table 3 reports the statistical significance of the relative performance differences across

portfolio choice methods. Specifically, the table reports the Bayesian probability that each

method outperforms any of the other methods. To compute these pairwise probabilities of
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Figure 2: Performance over Time

Note: The left panel shows the cumulative sum of returns before trading cost, rπ,gross
t+1 , for each portfolio

method. The middle panel shows the cumulative sum of returns net of trading cost, rπ,net
t+1 . The right

panel shows the cumulative return net of trading cost (TC) and net of disutility from risk, computed as
rπ,util
t+1 = rπ,gross

t+1 − TCπ
t − γ

2 (rπ,net
t+1 − r̄π,net

t+1 )2 , corresponding to the realized utility. We assume that the
investors has a relative risk aversion of 10 and invested wealth of $10 billion by the end of 2020.

one method outperforming another, we first compute the utility flow (return net of trading

costs and risk) of each method π at time t + 1 as rπ,util
t+1 = rπ,gross

t+1 − TCπ
t − γ

2
(rπ,net

t+1 − r̄π,net
t+1 )2,

where the relative risk aversion is γ = 10 as before. We then compute the utility difference

between any two methods, say π and π̃, as dπ,π̃,t+1 = rπ,util
t+1 −rπ̃,util

t+1 . The posterior of the true

utility difference is then normally distributed with mean d̄π,π̃ = 1
T

∑T
t=1 dπ,π̃,t and variance

1
T−1

∑T
t=1(dπ,π̃,t − d̄π,π̃)2 assuming that the difference is normally distributed with a non-

informative prior about the mean and a known variance. Based on these calculations, Table

3 reports the posterior probability that dπ,π̃ > 0, that is, the posterior probability that the

first portfolio choice method, π, delivers a higher average utility than the second method, π̃.

Table 3 shows that the probability that Portfolio-ML delivers a higher expected utility

than Multiperiod-ML∗, Static-ML∗, Portfolio sort, and Markowitz-ML are, respectively, 95%,

96%, 100%, and 100%, suggesting that the superiority of Portfolio-ML is not just random

noise.

Alternatively, we can think of the probabilities in Table 3 as being approximately the

p-value of a one-sided test that the realized utility of i is greater than j. Hence, we see that
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Figure 3: Portfolio Statistics over Time

Note: The top panel shows the ex-ante volatility of each portfolio method based on a monthly updated
covariance matrix. The middle panel shows portfolio leverage defined as the sum of absolute portfolio
weights. The lower panel shows the monthly portfolio turnover defined as

∑
i |(πt − gtπt−1)i|, the sum of

absolute differences between the current portfolio weight, πt, and the grown portfolio weight from last month,
gtπt−1. We use a logarithmic scale for the y-axis because of large differences across methods.

we can reject that Portfolio-ML delivers a lower realized utility than the other methods at

conventional levels of significance.

Lastly, Table 4 reports the return correlations of the various portfolio choice methods.

We see that all methods are positively correlated, but the correlations tend to be modest

in size. In addition to showing the relative connection across these methods of portfolio

choice, these findings may also be informative about asset pricing more generally. Indeed,

the Markowitz-ML portfolio return can be viewed as an estimate of the minimum-variance

stochastic discount factor (SDF) in a frictionless market as shown by Hansen and Jagan-

nathan (1991). Since risk adjustments depend on covariance with the SDF, a natural ques-
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Figure 4: Portfolio Weights: Apple vs. Xerox

Note: The figure shows the portfolio weights of Apple and Xerox for each of the five portfolio choice methods,
2015–2020. Apple is chosen as an example of a relatively liquid stock and Xerox as a relatively illiquid stock
over this time period. By the end of 2020, the average daily dollar volume over the past six months was
$16.39B for Apple and $0.06B for Xerox.

tion is how closely SDF aligns with the corresponding measure designed for a market with

frictions. The correlation between Portfolio-ML and Markowitz-ML is only 0.17, indicating

that the marginal utility of an investor with $10 billion using Portfolio-ML could be very

different from risk adjustments in a frictionless market.

In summary, this section shows that Portfolio-ML outperforms the other methods, de-

livering a high net Sharpe ratio and high utility. While this strong performance suggests

that Portfolio-ML works well, a few words of warning are in order. First, while the net

performance is extremely good in our simulation, real-world investors seeking to achieve this

performance must often pay fees to a an asset manager (e.g., a hedge fund) running such

strategies and face other real-world complications, potentially reducing performance. Sec-
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Table 3: Relative Probability of Outperformance

Portfolio-ML Multiperiod-ML∗ Static-ML∗ Portfolio Sort Markowitz-ML
Portfolio-ML 95% 96% 100% 100%
Multiperiod-ML∗ 5% 51% 100% 100%
Static-ML∗ 4% 49% 100% 100%
Portfolio Sort 0% 0% 0% 100%
Markowitz-ML 0% 0% 0% 0%

Note: The table shows the probability of the row method having a higher average utility than the column
method. The probability is computed via an uninformative prior assuming that the difference in utility is
normally distributed. The utility flow of any method π at time t + 1 is rπ,util

t+1 = rπ,gross
t+1 − TCπ

t − γ
2 (rπ,net

t+1 −
r̄π,net
t+1 )2. One can also think of each number as the p-value in the test of whether the average utility of the

portfolio choice method in the row is greater than the average utility of the method in the column.

ond, investors might not have been able to realize this performance in real time due to more

limited computing power and a less developed ML methodology in the early sample. In any

case, this warning applies to any simulation, and the statistically significant outperformance

of Portfolio-ML relative to other methods is an encouraging apples-to-apples test.

5.2 Evidence on the Implementable Efficient Frontier

Textbooks and real-world investors often depict their investment opportunities in terms of

the achievable combinations of risk and expected return. This illustration highlights that

investors seek a portfolio on the efficient frontier with the highest expected return for any

level of risk. The textbook version of the efficient frontier – without trading costs – is a

straight line that is tangent to the hyperbola of risky investments. However, we propose

that investors should focus on what we call the implementable efficient frontier, namely the

efficient frontier net of trading costs.

Figure 1 illustrates our estimated implementable efficient frontier, out-of-sample. To

understand how we have generated this plot, we start by describing the two benchmarks

Table 4: Portfolio Correlations

Portfolio-ML Multiperiod-ML∗ Static-ML∗ Portfolio Sort
Multiperiod-ML∗ 0.51
Static-ML∗ 0.55 0.80
Portfolio Sort 0.24 0.46 0.53
Markowitz-ML 0.17 0.50 0.59 0.56

Note: The table shows the time-series correlation of the returns before trading costs for the various portfolio
choice methods, 1981-2020.
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for a world without trading costs. The hyperbola is a mean-variance frontier of risky assets

inspired by Markowitz (1952, 1959). We generate the points on the frontier by minimizing

variance for a given mean and requiring that portfolio weights sum to 1:

min
πt∈RN

π′
tΣtπt,

s.t. π′
tμt = k,

π′
t1N = 1,

where k is the required mean return, and 1N is a vector of ones. The solution is given by

πt =
ctk − bt

dt

Σ−1
t μt +

(at − btk)

dt

Σ−1
t 1N , (41)

where at = μ′
tΣ

−1
t μt, bt = 1′NΣ−1

t μt, ct = 1′NΣ−1
t 1N , and dt = atct − b2

t are constants. Imple-

menting this solution for a range of k’s generates the hyperbola. A standard presentation of

the frontier uses one cross-section of stocks (i.e., one μt and one Σt) and presents the ex-ante

expected frontier. In contrast, we show the realized frontier out-of-sample. Specifically, for

each k, we update portfolio weights each month using (41). We then record the realized

return and volatility before trading cost over the sample, 1981-2020. In contrast to the stan-

dard textbook presentation, the efficient frontier of risky assets in Figure 1 also accounts for

out-of-sample performance decay. As such, it gives a more realistic picture of what investors

could achieve absent trading costs.

The second benchmark for the case without trading cost is the Markowitz-ML portfolio.

In a standard presentation, the line from this portfolio would be tangent to the hyperbola.

However, because our analysis is out-of-sample, this outcome is not ensured. In fact, the

Markowitz-ML portfolio lies above the hyperbola.15

Next, we shift the attention from the frictionless benchmarks to our main focus, namely

15This result might be surprising since the Markowitz-ML portfolio in a given period is proportional to
the tangency portfolio of risky assets. Specifically, the tangency portfolio is πTPF = 1

bt
Σ−1

t μt, while the

Markowitz-ML portfolio is πMarkowitz-ML
t = 1

γ Σ−1
t μt. However, the scaling constant for Markowitz-ML, γ−1,

is fixed across time periods, while the scaling constant for the tangency portfolio, b−1
t , varies significantly

over time and even turns negative during a minority of periods. So the Markowitz portfolio can dominate the
hyperbola for two reasons. First, when bt is negative, the Markowitz portfolio shorts the tangency portfolio
(which is on the lower branch of the hyperbola during such times) and the efficient frontier lies strictly above
the hyperbola. Second, the differing time-varying scales of πMarkowitz-ML

t and πTPF (i.e., the differing timing
of the common underlying portfolio) turns out to work in favor of the Markowitz portfolio.
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the implementable efficient frontier. These are computed via equation (11). Figure 1.A shows

the efficient frontier after trading cost for an investor using different portfolio methods. We

implement each method assuming an investor with a wealth that reaches $10b by 2020.

We illustrate the performance of Markowitz-ML and portfolio sort with trading cost by

scaling each portfolio to ex-post volatilities ranging from 0 to 10% in increments of 1%. We

see that their returns after trading cost are negative, except at very low volatilities. Hence,

implementable efficient frontiers of these standard methods show that an investor maximizes

utility by putting almost all wealth into the risk-free asset, thus choosing to hardly trade on

these standard methods.

Turning to the trading-cost-aware methods, Portfolio-ML and Static-ML ∗, we see that

their performance is much better. Instead of varying the ex-post volatilities, we implement

the methods under five different relative risk aversions, γ ∈ {1, 5, 10, 20, 100} and interpo-

lating between their realized performance to plot an efficient frontier. Comparing the two

implied frontiers, we see that Portfolio-ML leads to a higher achievable return for the same

volatility. More generally, the figure shows that it is feasible for a large investor to generate

an attractive implementable efficient frontier, even net of trading costs.

Panel B of Figure 1 shows how the implementable efficient frontier varies by investor size.

Specifically, we implement the Portfolio-ML method for the same relative risk aversions as

above, but now we also vary the investor wealth, w2020 ∈ {0, 109, 1010, 1011}. Such a plot

is not interesting without trading cost since the efficient frontier is the same regardless of

investor size. With trading costs, this is no longer the case. Price impact is increasing in

trade size, so a larger investor must trade more slowly and focus more on liquid stocks.

Naturally, these effects imply that larger investors have a worse risk-return tradeoff. The

results in Figure 1.B quantifies how much worse. The figure shows the substantial cost of

being a large investor. For example, an investor with $10B and a relative risk aversion of

10, gets a net excess return of 19% at 14% volatility. If the same investor had $1B, a 14%

volatility would provide a net return of 22%. In summary, once we introduce trading costs,

we no longer have a unique efficient frontier. Instead, the implementable efficient frontier

depends on the size of the investor and the method of portfolio choice.

Finally, Figure 5 shows how the efficient frontier depends on access to certain features.

We use a methodology known as permutation feature importance to assess this dependence.

We provide a detailed description of this methodology in Section 5.3. Briefly, for a specific
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Panel A: Counterfactual Implementable Efficient Frontiers: With Trading Cost
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Panel B: Counterfactual Efficient Frontiers: Without Trading Cost
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Figure 5: Feature Importance: Counterfactual Implementable Efficient Frontiers

Note: Panel A shows the implementable efficient frontier with trading costs for an investor with a wealth of
$10B by 2020. We implement the Portfolio-ML method using a counterfactual data set, where we permute
all feature values related to either quality, value, or short-term reversal. The solid blue line shows the frontier
using the actual data. Panel B shows the same analysis without trading cost, now using the Markowitz-ML
method. In both panels, the relative risk aversions are 1 (circle), 5 (triangle), 10 (square), 20 (plus), and
100 (boxed cross) and the sample period is 1981-2020.

theme, say quality, we randomly shuffle (permute) all features related to this theme, effec-

tively breaking their informational content. We then implement Portfolio-ML (Panel A) or

Markowitz-ML (Panel B) using this counterfactual data. If the theme is important, breaking

its informational content should lead to a worse risk-return tradeoff. In other words, destroy-

ing important features leads to a less desirable efficient frontier. We build counterfactual

data sets by permuting quality, value, and short-term reversal signals separately. The solid
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blue line shows the efficient frontier with the original data.

Panel A shows the impact on the efficient frontier generated by Portfolio-ML, after trading

cost, for an investor with $10B in wealth. We see that quality and value signals are crucial

for the implementable frontier. In contrast, destroying the informational content in short-

term reversal signals barely changes the achievable frontier because these trading-cost-aware

portfolio choice methods hardly use this signal anyway.

Panel B shows the impact on the efficient frontier generated by Markowitz-ML before

trading cost. Here, all three themes are important. Interestingly, while short-term reversal

has a minor impact on the implementable frontier with trading costs in Panel A, it has a

large impact on the frontier without trading cost in Panel B.

In summary, looking at the efficient frontier without trading cost suggest that value,

quality, and short-term reversal signals are all important for the efficient frontier. However,

looking at the implementable efficient frontier of a large investor, value and quality remain

important while short-term reversal does not. These results highlight that feature importance

can change drastically when accounting for trading costs, and we explore this finding further

in the next section.

5.3 Economic Feature Importance

Following the theoretical discussion in Section 2.3, we define economic feature importance as

the drop in realized utility when excluding a feature from the information set of the investor.

To implement this idea, we use the concept of permutation feature importance, introduced by

Breiman (2001), which is a standard model-agnostic method for assessing feature importance

of machine learning models (Molnar, 2022). The basic idea behind permutation feature

importance is to permute features randomly and assess the decline in a user-defined value

function. As such, we do not exclude the feature from the information set but, instead,

destroy any predictive relationship between the feature and the outcome variable.

To compute economic feature importance for any portfolio choice method i, say Portfolio-

ML, we first compute the baseline realized utility, utility[πi(sorig)], of the portfolio, πi, com-

puted based on the original features, sorig. Next, for each feature j, we randomly per-

mute its associated values at each given time, while keeping all other features at their

actual values. We then implement the portfolio method using the same parameters as

in the original specification, but now with the permuted features, sperm,j , as inputs. Fi-
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nally, we compute the economic feature importance as the resulting drop in utility, FI i
j =

utility[πi(sorig)] − utility[πi(sperm,j)]. In other words, a feature j is economically important

for method i if destroying its informational content leads to a large drop in realized utility,

that is, a large FIi
j.

A potential issue with permuting each feature separately is that substitution effects can

distort the inference. For example, we include many different value features, so the effect of

permuting a specific feature such as book-to-market is muted because the method can rely

on other value features such as assets-to-market or earnings-to-price. To handle substitu-

tion effects, we permute all features within a specific theme (or cluster) and record feature

importance at the theme level. We use the 13 themes from Jensen et al. (2022), shown in

Table C.1 in appendix.

Figure 6 shows features importance for three different methods. The left and middle

panels show feature importance after trading costs for a large investor with a wealth of $10b

by 2020 for, respectively, Portfolio-ML and Multiperiod-ML∗. The right panel shows feature

importance without trading costs for Markowitz-ML, where we ignore trading costs because

this method does not work after trading costs, making it meaningless to discuss net-of-cost

feature importance. As such, the right panel serves as the benchmark of a frictionless market.

Looking at the frictionless benchmark in right panel of Figure 6, we see that the important

feature themes before trading costs are value, short-term reversal, and low risk. Turning to

the net-of-cost feature importance in the left and middle panels, we see that value remains

important for a large investor. In contrast, short-term and low risk are far less important

due to the high turnover of many of the factors within these themes (see figure C.2). This

finding is consistent with the theoretical results of Section 2.3, namely that high-frequency

features are less important in the presence of trading costs.

For example, the short-term reversal theme includes the short-term reversal factor, which

has a monthly autocorrelation of −0.04. This autocorrelation is not just low, but actually

negative, giving rise to large portfolio turnover.16 For a large investor, the predictive ability

of short-term reversal is not enough to overcome the cost of trading it. Similarly, the low-risk

theme includes features such as the past-month volatility or the maximum return over the

past month, where the predictive ability is short-lived. (We note that some of the factors in

16The autocorrelation of a feature is computed as the average autocorrelation across all stocks with at
least five years of monthly observations.
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Figure 6: Economic Feature Importance

Note: The figure shows a utility-based feature importance measure for Portfolio-ML and Multiperiod-ML∗,
the two trading cost-aware methods motivated by Proposition 3, and Markowitz-ML, which is the optimal
solution absent trading cost from (32). We randomly shuffle the associated features for each theme while
keeping all other features at their actual value. We then implement each method based on this counterfactual
data and measure feature importance as the difference in realized utility relative to the implementation that
uses the actual data. For Markowitz-ML, we assume that the investor can trade without incurring trading
cost.

these themes have low turnover, e.g. market beta, and may individually have a meaningful

feature importance, but our results indicate that the overall themes are less importance net

of trading costs.) In comparison, book-to-market has a monthly autocorrelation of 0.94,

indicating that it is a highly persistent feature, thus economizing on trading cost.

For Portfolio-ML, quality emerges as the most important theme. The median monthly

autocorrelation of quality features is 0.93, so the result is again consistent with the theoretical

findings. Perhaps surprisingly, momentum, generally considered a “fast” signal, is one of the

most important themes for a large investor. However, several momentum features actually

do exhibit a meaningful persistence; for example, 12-month return momentum has a monthly

autocorrelation of 0.87. Furthermore, momentum and value are negatively correlated, which

leads to less trading because the two signals offset each other.

In summary, value, quality, and momentum are the economically important feature

themes for a large investor facing trading costs. Before trading costs, high-frequency signals

such as short-term reversal are the most important.
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6 Conclusion

We develop a bridge between ML and portfolio choice with trading costs. To accomplish

this bridge, we solve the optimal portfolio problem with transaction costs when returns

are predictable via an arbitrary function of security characteristics, and then show how the

solution can be computed in a tractable way via machine learning directly about portfolio

weights.

To evaluate the usefulness of our method – and, in fact, any method of portfolio choice

– we propose that investors should focus on the implementable efficient frontier, not the

standard cost-agnostic efficient frontier. We show empirically that our method expands

the implementable efficient frontier relative to other methods of portfolio choice. In other

words, we find significant out-of-sample gains from our method even relative to sophisticated

and more highly parameterized alternatives. We also consider several comparative statics,

showing how the implementable efficient frontier contracts for larger investors facing higher

market impact costs.

Finally, the method implies a novel view of which securities are important. Indeed,

while standard methods that ignore transaction costs focus on transient features that work

well on paper for small stocks, our method naturally selects persistent features of economic

importance.
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Appendix
The appendix is organized as follows. Appendix A presents implementation details,

including how to compute the discount factor m (section A.1) and details on Multiperiod-
ML (A.2).

Appendix B contains proofs, including a key technical lemma for verifying optimality of
policies (B.2), properties of m used in the proofs (B.3), proofs of Propositions 2 and 3 (B.4),
proofs of Propositions 4 and 5 (B.5), the optimality of Portfolio ML (B.6), and economic
feature importance (B.7).

Appendix C contains further empirical information, including an overview of the secu-
rity characteristics used empirically (C.1), the estimated hyper-parameters over time (C.2),
and the autocorrelation of the features and their importance for different return prediction
horizons (C.3).

A Implementation Details

A.1 Computing the Discount Factor m

Lemma 2 Suppose that Λ and Σ are both diagonal. Let Λ−1/2ΣΛ−1/2 = diag(qi,i) is diagonal,
then there exists a unique diagonal solution m̃ to (B.58) such that Λ−1/2m̃Λ1/2ḡ has all
eigenvalues below one in absolute value. It is given by

mi,i =
2

w−1γqi,i + Gi,i + 1 +
√

(w−1γqi,i + Gi,i + 1)2 − 4Gi,i

(A.1)

Proof of Lemma 2. The proof follows by direct calculation. �

Another special case with a closed-form solution is when G has a rank of one, which is
not a realistic case, but turns out to be a useful approximation. Specifically, we have that
G = ḡḡ′+ 1

(1+rf+μ̄)2
Σ ∼= ḡḡ′, where17 ḡ = (1+rf + μ̄)−1(1+rf +E[μ]) and the approximation

is based on the idea that ḡ is a vector of numbers close to one, whereas Σ is much smaller
with numbers of the order of 0.102 when monthly volatility is around 10%.

Lemma 3 Suppose that Λ is diagonal. In the case when G = ξξ′ for some vector ξ > 0,
then the unique solution m to (B.46) such that m diag(ξ) has all eigenvalues below one in
absolute value and m̃ ∈ S(0, 1) given by m = Λ−1/2m̃Λ1/2 where

m̃ = diag(ξ)−1/2 0.5(Σ̂ −
(
Σ̂2 − 4I

)1/2

) diag(ξ)−1/2 (A.2)

and Σ̂ = diag(ξ)−1/2(w−1Λ−1/2γΣΛ−1/2 + diag((ξ2
i + 1))) diag(ξ)−1/2 and

(
Σ̂2 − 4I

)1/2

is

the unique positive-definite square root.

17We abuse the notation and use ḡ to denote both the vector and the diagonal matrix.
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Proof of Lemma 3. We have that (B.58) takes the form

m̃ =
(
Λ−1/2ΣΛ−1/2 + I + Λ−1/2 diag(ξ)(Λ1/2(I − m̃)Λ1/2) diag(ξ)Λ−1/2

)−1

. (A.3)

and the assumption of a diagonal Λ implies

m̃ =
(
Λ−1/2ΣΛ−1/2 + I + diag(ξ)(I − m̃) diag(ξ)

)−1

. (A.4)

We abuse the notation and use ξ to denote diag(ξ). Let Σ̃ = Λ−1/2ΣΛ−1/2 + I + ξ2. Then,
(A.4) takes the form

m̃ =
(
Σ̃ − ξm̃ξ

)−1

. (A.5)

Define

Σ̂ = ξ−1/2Σ̃ξ−1/2 = ξ−1/2Λ−1/2ΣΛ−1/2ξ−1/2 + ξ−1 + ξ > 2I ,

where the last inequality follows because ξ + ξ−1 ≥ 2 for any positive number ξ. Let also
m̂ = ξ1/2m̃ξ1/2. Then, we get

m̂2 − Σ̂m̂ + I = 0 (A.6)

which has 2N solutions. The smallest solution is given by

m̂ = 0.5(Σ̂ − (Σ̂2 − 4I)1/2) . (A.7)

The function f(x) = 0.5(x − (x2 − 4)1/2) = 2/(x + (x2 − 4)1/2) < 1 for all x > 2, and the
claim follows. �

Starting with this approximation, we can compute the exact m stepwise, as follows. Note
first that the set S of symmetric, positive definite matrices is a partially-ordered set with
respect to the positive semi-definite order: We say that m1 ≤ m2 if m2−m1 is positive semi-
definite. Further, we let S(0, 1) be the set of positive semi-definite matrices with eigenvalues
between zero and one.

Suppose for simplicity that Λ is diagonal. Since the optimum is unique, the proof of
Proposition 2 implies that (B.58) has a unique solution m̃ ∈ S(0, 1). Remarkably, this so-
lution automatically satisfies the transversality condition ḡ1/2m̃ḡ1/2 ∈ S(0, 1). The following
lemma shows how to construct this unique solution.

Lemma 4 The unique solution m̃ ∈ S(0, 1) to (B.58) can be computed as follows: m =
Λ−1/2m̃Λ1/2, where m̃ can be found by iterating the mapping F :

F (m̃) =
(
w−1Λ−1/2γΣΛ−1/2 + I + Λ−1/2((Λ1/2(I − m̃)Λ1/2) ◦ G)Λ−1/2

)−1

. (A.8)

Indeed, F maps S(0, 1) into itself, is monotonic with respect to the positive semi-definite
order. Furthermore, it has a unique fixed point m̃∗ ∈ S(0, 1), and its iterations converge to
this unique fixed point from any starting point m0 in S(0, 1) satisfying either m0 ≤ F (m0) or
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m0 ≥ F (m0). In particular, it converges upward from the smallest starting point 0 ∈ S(0, 1) :

F (0) ≤ F (F (0)) ≤ ∙ ∙ ∙ ≤ F (∙ ∙ ∙ (F (0))) → m̃∗

Furthermore, the map F is monotone decreasing in the matrix G in the sense of positive semi-
definite order: m̃(G1) ≤ m̃(G2) whenever G1 ≥ G2. In particular, if G = ḡḡ′ + 1

(1+rf+μ̄)2
Σ

with ḡ = (1+rf + μ̄)−1(1+rf +E[μ]), and if Λ is diagonal, then it also converges downward
from the starting point m̃(ḡ) from Lemma 3:

F (m̃(ḡ)) ≥ F (F (m̃(ḡ))) ≥ ∙ ∙ ∙ ≥ F (∙ ∙ ∙ (F (m̃(ḡ)))) → m̃∗ (A.9)

so the first iterations of these provide lower and upper bounds:

(
w−1Λ−1/2γΣΛ−1/2 + diag((Gi,i + 1))

)−1

≤ m̃∗ ≤
(
w−1Λ−1/2γΣΛ−1/2 + I + ((I − m̃(ḡ)) ◦ G)

)−1

.
(A.10)

Proof. The only claim that requires proof is the fact that m̃(ḡ) ≥ F (m̃(ḡ); G). Indeed, by
the monotonicity of F in G we have

m̃(ḡ) = F (m̃(ḡ); ḡḡ′) ≥ F (m̃(ḡ); G)

and the claim follows. This inequality combined with monotonicity implies the required
sequence of inequalities (A.9). �

A.2 Implementation Details for Multiperiod-ML

Suppose that Λ is diagonal. While formula (21) requires an infinite sum, in our numerical
implementation we use the approximation

At = (I − m)−1(I − (m diag(ḡ)))2(I − (m diag(ḡ)))−2

∞∑

τ=0

(m diag(ḡ))τcΣ−1Et[rt+1+τ ]

= (I − m)−1(I − (m diag(ḡ)))2

∞∑

τ=0

(m diag(ḡ))τ (I − (m diag(ḡ)))−2cΣ−1Et[rt+1+τ ]

= (I − m)−1(I − (m diag(ḡ)))(I − (m diag(ḡ)))
∞∑

τ=0

(m diag(ḡ))τ c̃ Σ−1Et[rt+1+τ ]

≈ (I − m)−1(I − (m diag(ḡ)))2(I − (m diag(ḡ))k+1)−1

k∑

τ=0

(m diag(ḡ))τ c̃ Σ−1Et[rt+1+τ ]

(A.11)

where we have defined

c̃ = (I − (m diag(ḡ)))−2c . (A.12)
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B Proofs

B.1 Properties of the Implementable Efficient Frontier

We note that the textbook efficient frontier is usually defined in terms of a risk-minimization
problem, rather than the return-maximization in (10). Hence, we could consider the corre-
sponding definition of the implementable efficient frontier as the combination of volatilities
and expected net returns, (σ(k), k)k≥0, such that risk is minimal for that level of net return:

σ(k)2 = min
πt

E [π′
tΣπt] s.t. E

[
rπ,net
t+1

]
= k (B.1)

However, this definition is less helpful for two reasons. First, no solution exists for large
enough k. Second, this definition cannot produce the downward-sloping portion of the
frontier seen in Figure 1.

Proof of Proposition 1. (i) We first show that the net Sharpe ratio is decreasing along
the frontier. To see that, consider two risk levels, σ1 < σ2. Let π2 be the frontier portfolio
corresponding to σ2. This portfolio has the highest expected net return for this level of risk,
therefore also the highest net Sharpe ratio. If we scale down this portfolio to π1 = σ1

σ2
π2

(putting the rest of the money in the risk-free asset), then the risk becomes σ1

σ2
σ2 = σ1. Then

we have:

max
πt∈Π s.t. E[π′

tΣπt]=σ2
1

E
[
rπ,net
t+1

]
≥ E

[
rπ1,net
t+1

]
>

σ1

σ2

E
[
rπ2,net
t+1

]
(B.2)

Here, the first inequality follows from the definition of the frontier as the maximum. The
second inequality follows from the fact that gross returns are linear, but transaction costs
are quadratic and σ1

σ2
< 1. Dividing both sides of (B.7) by σ1, we see that the net Sharpe

ratio is decreasing in σ.
(vi) Consider the implementable efficient frontier corresponding to a wealth of w1 and

w2, where w1 < w2. Take a point on the frontier of w2 corresponding the a risk of σ and
a portfolio π2. Then with wealth w1, the portfolio π2 delivers a higher net return with the
same risk (and there may exist another portfolio with even higher net return for this level
of wealth), so the frontier of w1 must be above that of w2.

(ii)–(iii) To prove concavity of the implementable efficient frontier, consider two risk
levels, σ1, σ2. Let π(σ) be the frontier portfolio corresponding to σ, and let

R(σ) = max
πt∈Π s.t. E[π′

tΣπt]=σ
E
[
rπ,net
t+1

]
(B.3)

Define

π̃ = 0.5(π(σ1) + π(σ2)) . (B.4)

Then,

E[π̃′Σπ̃] = E[0.25((π(σ1)
′Σπ(σ1) + (π(σ2)

′Σπ(σ2) + 2(π(σ1)
′Σπ(σ2))]

≤ 0.25(σ2
1 + σ2

2 + 2σ1σ2) = (0.5(σ1 + σ2))
2 ,

(B.5)
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where we have used a modified Cauchy-Schwarz inequality

E[(π(σ1)
′Σπ(σ2)] ≤ E[((π(σ1)

′Σπ(σ1))
1/2((π(σ2)

′Σπ(σ2))
1/2]

≤ E[((π(σ1)
′Σπ(σ1))]

1/2E[((π(σ2)
′Σπ(σ2))]

1/2 ≤ σ1σ2

(B.6)

Therefore,

0.5(R(σ1) + R(σ2)) = 0.5(E
[
r

π(σ1),net
t+1

]
+ E

[
r

π(σ1),net
t+1

]
)

= E
[
r′t+1π̃ − 0.5(TCπ(σ1) + TCπ(σ2))

]
.

(B.7)

Since transaction costs are convex in πt, we have

−0.5(TCπ(σ1) + TCπ(σ2)) ≤ −TC π̃ .

Thus,

E
[
rπ̃,net
t+1

]
≥ 0.5(R(σ1) + R(σ2)) ,

while

σ(π̃) = (E[π̃′Σπ̃])1/2 ≤ 0.5(σ1 + σ2) .

Thus, we get R(σ(π̃)) ≥ 0.5(R(σ1) + R(σ2)), and hence, the required concavity follows if
R(σ) is increasing on [0.5(σ1 + σ2), σ(π̃)] .

Now, pick a γ > 0. Then, clearly, πγ belongs to the efficient frontier, corresponding to
some σ(γ) : Otherwise, we could increase net expected return keeping the variance fixed.
We also note that for large γ, the effect of transaction costs is negligible and, hence, the
efficient frontier for σ ≈ 0 approximately coincides with the frictionless one, and hence k(σ)
is monotone increasing for σ ≈ 0.

The set of eligible portfolios (adapted, square-integrable processes) is a Hilbert space H
we can define operators A,B and a vector x ∈ H so that E[rπ,net] = 〈x, π〉 − 0.5〈Ax, x〉
and E[π′Σπ] = 〈πB, π〉, where 〈∙, ∙〉 is the inner product in the Hilbert space. We consider
finite-dimensional approximations of the quadratic problem and thus assume that A,B are
finite-dimensional matrices. Then, the first order condition is

x − Aπ = λBπ (B.8)

where λ is the Lagrange multiplier of the constraint 〈π,Bπ〉 = σ2. Now,

π = (A + λB)−1x , (B.9)

and we need to solve the equation

〈(A + λB)−1B(A + λB)−1x, x〉 = σ2 (B.10)

For the increasing part of the frontier, the constraint 〈π,Bπ〉 ≤ σ2 is binding and λ > 0.
This defines σ2

∗ = 〈A−1BA−1x, x〉.
Beyond that we need to use the eigen-decomposition of B−1/2AB−1/2 and define x̃ =

B−1/2x. Then, if νi are the eigenvalues of BB−1/2AB−1/2 and x̃i are the coordinates of x̃ in
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the eigen-basis, we get that we need to maximize

〈x, (A + λB)−1x〉 − 0.5〈(A + λB)−1(A + λB − λB)x, (A + λB)−1x〉

= 0.5〈x, (A + λB)−1x〉 + 0.5λσ2

= 0.5
∑

i

x̃2
i (1 + λνi)

−1 + 0.5λσ2
(B.11)

under the constraint
∑

i

x̃2
i (1 + λνi)

−2 = σ2 . (B.12)

This function (as a function of λ) explodes for λ = −1/νi.
Now, for the mean-variance optimization problem, the solution is

π = (A + γB)−1x (B.13)

and the variance

〈(A + γB)−1x,B(A + γB)−1x〉 (B.14)

is monotone decreasing in γ and converges to σ2
∗ when γ → 0. At the same time,

R(γ) = 〈(A + γB)−1x, x〉 (B.15)

is also monotone decreasing in γ. �

B.2 Verification Lemma

Our proofs are based on the following auxiliary result.

Lemma 5 For simplicity, we normalize γ/w = 1. Let Λ̄t = Et[gt+1Λgt+1]. For any solution
mt to

mt = (Σ + Λ + Λ̄t)
−1

(

Et[gt+1Λmt+1gt+1]mt + Λ

)

, (B.16)

define

Nt,t+τ =
θ∏

τ=1

mt−τ+1 gt−τ+1 (B.17)

and

Ñt,t+τ =
θ∏

τ=1

mt−τ+1 Λ−1gt−τ+1Λ . (B.18)
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Suppose that

∞∑

τ=1

‖Et[N
′
t,t+τNt,t+τ ]‖

1/2 < ∞ (B.19)

and

∞∑

τ=1

‖Et[Ñ
′
t,t+τ Ñt,t+τ ]‖

1/2 < ∞ (B.20)

Define

ct = mtΛ
−1Σ (B.21)

and

Qt = Et

[
∞∑

τ=0

Ñt,t+τct+τMarkowitzt+τ

]

(B.22)

and let

πt = π(st, st−) =
∞∑

θ=0

Nt−θ,tQ(st−θ) . (B.23)

Then, all series converge in L2 and πt is optimal among all bounded stationary processes πt.
Furthermore, it satisfies the recursive relationship

π(st, st−) = Q(st) + mtgtπ(st−1, st−1−) (B.24)

Proof of Lemma 5. Due to the strict convexity of the objective, it suffices to verify the
first order conditions. Let

O(π) = min
π∈L2

E
[
−2μ(st)

′πt + π′
tΣπt + (πt − gtπt−1)

′ Λ (πt − gtπt−1)
]

(B.25)

Standard convexity arguments imply that it suffices to derive and verify the first order
conditions for our candidate solution.

Let st− denote the history of st and πt = π(st, st−) be a candidate optimal policy and
Then, by direct calculation, using the ergodicity property, we get while the law of iterated
expectations implies that

E[π′
t−1gtΛgtπt−1] = E[π′

tgt+1Λgt+1πt] = E[π′
tΛ̂tπt] ,

where

Λ̄t = Et[gt+1Λgt+1] . (B.26)
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Therefore,

O(π)

= E

[

− 2 μ(st)
′π(st, st−) + π(st, st−)′(Σ + Λ + Λ̄t)π(st, st−)

]

− 2E[π(st, st−)′gt+1Λπ(st+1, st+1−)] ,

(B.27)

In order to compute the first order conditions, we need to calculate the Frechet derivative
of (B.27) with respect to π. To this end, we consider a small perturbation π → π + εY and
calculate the first order term in ε, so that

O(πt + εYt) = O(πt) + εE[D(πt)
′ Yt] + O(ε2) (B.28)

and D(π) is the Frechet derivative. To this end, we compute

E[μ(st)
′(π(st, st−) + εYt)] = E[μ(st)

′π(st, st−)] + εE[μ(st)
′Yt]

E[(π(st, st−) + εYt)
′(Σ + Λ + Λ̄t)(π(st, st−) + εYt)]

= E[π(st, st−)′(Σ + Λ + Λ̄t)π(st, st−)]

+ 2εE[π(st, st−)′(Σ + Λ + Λ̄)Yt] + O(ε2)

E[(π(st, st−) + Yt)
′gt+1Λ(π(st+1, st+1−) + Yt+1)]

= E[π(st, st−)′gt+1Λπ(st+1, st+1−)]

+ ε

(

E[Y ′
t Et[gt+1Λπ(st+1, st+1−)]] + E[π(st, st−)′gt+1ΛYt+1]

)

(B.29)

Furthermore, by ergodicity,

E[π(st, st−)Yt+1] = E[π(st−1, st−1−)Yt] .

and and we conclude that the Frechet derivative is given by

D(π) = −2μ(st) + 2(Σ + Λ + Λ̄)π(st, st−)

− 2Et[gt+1Λπ(st+1, st+1−)] − 2Λgtπ(st−1, st−1−) ,
(B.30)

where Λ̄(st) = Et[Λ(st+1)], implying that a bounded π is optimal if it satisfies the integral
equation

π(st, st−) = (Σ + Λ + Λ̄t)
−1

(

μ(st) + Et[gt+1Λπ(st+1, st+1−)] + Λgtπ(st−1, st−1−)

)

.

(B.31)

Substituting the Ansatz

πt = Qt + mgtπt−1 (B.32)
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into this equation, we get

Qt + mtgtπt−1

= (Σ + Λ + Λ̄t)
−1

(

μ(st)

+ Et[gt+1Λ(Qt+1 + mt+1gt+1Qt + mt+1gt+1mtgtπt−1)] + Λgtπt−1

)

.

(B.33)

Equating the coefficients on πt−1 gives an integral equation for mt :

mtgt = (Σ + Λ + Λ̄t)
−1

(

Et[gt+1Λmt+1gt+1mtgt] + Λgt

)

, (B.34)

and (B.33) turns into an integral equation for Qt :

Qt = (Σ + Λ + Λ̄t)
−1

(

μ(st) + Et[gt+1Λ(Qt+1 + mt+1gt+1Qt)]

)

. (B.35)

Dividing by gt, we get that (B.34) turns into the required equation (B.16). Furthermore, we
can rewrite (B.36) as

(I − (Σ + Λ + Λ̄t)
−1Et[gt+1Λmt+1gt+1)mt = (Σ + Λ + Λ̄t)

−1Λ , (B.36)

which implies

(I − (Σ + Λ + Λ̄t)
−1Et[gt+1Λmt+1gt+1]) = (Σ + Λ + Λ̄t)

−1Λm−1
t (B.37)

After a few algebraic transformations, that (B.35) is equivalent to

(I − (Σ + Λ + Λ̄t)
−1Et[gt+1Λmt+1gt+1])Qt = (Σ + Λ + Λ̄t)

−1

(

μ(st) + Et[gt+1ΛQt+1]

)

.

(B.38)

Substituting from (B.37), we can rewrite (B.38) as

Qt = mtΛ
−1

(

μ(st) + Et[gt+1ΛQt+1]

)

. (B.39)

Defining

ct = MtΛ
−1
t Σt, (B.40)

we get

Qt = ct Markowitzt + Et[mtΛ
−1gt+1ΛQt+1] . (B.41)

Iterating this equation, we get the required, modulo the convergence statement. Convergence
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in L2 follows directly from the made assumptions. Indeed,

E[Et[X]2] ≤ E[X2] (B.42)

and hence we can ignore Et[] when proving convergence. Furthermore, by the made uniform
boundedness assumptions and the uniform positive-definiteness of Σ t, we have

‖qt+τ‖ = ‖ct+τMarkowitzt+τ‖ ≤ K

for some K > 0, almost surely. Since

‖Qt‖ = ‖Et

[
∞∑

τ=0

Nt,t+τct+τMarkowitzt+τ

]

‖ ≤
∑

τ

‖Nt,t+τqt+τ‖ , (B.43)

to prove the convergence of Qt it suffices to show that

∑

τ

E[q′t+τN
′
t,t+τNt,t+τqt+τ ]

1/2 < ∞ (B.44)

which follows from the made assumptions. Convergence of the series representation for πt

also follows from the made assumptions. �

Recall that gt is the diagonal matrix of vec(gt) on the diagonal. For the case when μ is
constant, we have that

Gt = Et[vac(gt+1)vec(gt+1)
′] = (1 + gw

t )−2(Σ + (1 + rf
t + μt)(1 + rf

t + μt)
′) (B.45)

When gw
t , rf

t , and μt are all constant, we get that Gt = G is also constant, and we arrive at
the following result, which is a direct consequence of Lemma 5.

Lemma 6 For simplicity, we normalize γ/w = 1. Suppose that μt = μ, gw
t , rf

t are constant.
Let Λ̄ = Λ ◦ G. For any solution m to

m = (Σ + Λ + Λ̄)−1

(

((Λm) ◦ G)m + Λ

)

, (B.46)

define

Nt,t+τ =
θ∏

τ=1

mgt−τ+1 (B.47)

and

Ñt,t+τ =
θ∏

τ=1

m Λ−1gt−τ+1Λ . (B.48)

Suppose that

∞∑

τ=1

‖Et[N
′
t,t+τNt,t+τ ]‖

1/2 < ∞ (B.49)

54

Electronic copy available at: https://ssrn.com/abstract=4187217



and

∞∑

τ=1

‖Et[Ñ
′
t,t+τ Ñt,t+τ ]‖

1/2 < ∞ (B.50)

Define

c = mΛ−1Σ (B.51)

and

Qt = (I − mΛ−1ḡΛ)−1cMarkowitz (B.52)

and let

πt = π(st, st−) =
∞∑

θ=0

Nt−θ,tQ(st−θ) . (B.53)

Then, all series converge in L2 and πt is optimal among all bounded stationary processes πt.
Furthermore, it satisfies the recursive relationship

π(st, st−) = Q(st) + mgtπ(st−1, st−1−) (B.54)

B.3 Properties the Discount Factor m

This section shows some useful properties of the discount factor m solving (B.46). We start
with the following observation

Lemma 7 For simplicity, we normalize γ/w = 1. A matrix function m(st) = mt solves

mt = (Σ + Λ + Λ̄t)
−1

(

Et[gt+1Λmt+1gt+1]mt + Λ

)

, (B.55)

if and only if m̃t = Λ1/2mtΛ
−1/2 solves

m̃t =
(
Λ−1/2ΣΛ−1/2 + I + Λ−1/2Et[gt+1Λ

1/2(I − m̃t+1)Λ
1/2gt+1]Λ

−1/2
)−1

. (B.56)

In particular, if Gt is constant, then matrix m solves

m = (Σ + Λ + Λ̄)−1

(

((Λm) ◦ G)m + Λ

)

(B.57)

if and only if the matrix m̃ = Λ1/2mΛ−1/2 solves

m̃ =
(
Λ−1/2ΣΛ−1/2 + I + Λ−1/2(G ◦ (Λ1/2(I − m̃)Λ1/2))Λ−1/2

)−1

. (B.58)
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Proof of Lemma 7. We have

(Σ + Λ + Λ̄t)mt =

(

Et[gt+1Λmt+1gt+1]mt + Λ

)

. (B.59)

Writing mt = Λ−1/2m̃tΛ
1/2, we get

(Σ + Λ + Λ̄t)Λ
−1/2m̃tΛ

1/2 =

(

Et[gt+1ΛΛ−1/2m̃t+1Λ
1/2gt+1]Λ

−1/2m̃tΛ
1/2 + Λ

)

. (B.60)

Multiplying by Λ−1/2m̃−1
t from the right and by Λ−1/2 from the left, we get

Λ−1/2(Σ + Λ + Λ̄t)Λ
−1/2 =

(

Λ−1/2Et[gt+1Λ
1/2m̃t+1Λ

1/2gt+1]Λ
−1/2 + m̃−1

t

)

. (B.61)

This is equivalent to

m̃−1
t = Λ−1/2(Σ + Λ + Λ̄t − Et[gt+1Λ

1/2m̃t+1Λ
1/2gt+1])Λ

−1/2 , (B.62)

which is in turn equivalent to

m̃t =
(
Λ−1/2ΣΛ−1/2 + I + Λ−1/2Et[gt+1Λ

1/2(I − m̃t+1)Λ
1/2gt+1]Λ

−1/2
)−1

. (B.63)

In the case when mt = m is constant and Gt = G is constant, we get

Et[gt+1Λ
1/2(I − m̃)Λ1/2gt+1] = G ◦ (Λ1/2(I − m̃)Λ1/2)

and we get the required . �

Proposition 8 Let m̃ ∈ S(0, 1) be a solution to (B.58). Let q∗ < 1 be the largest eigenvalue
of m̃. Let m = Λ−1/2m̃Λ1/2 and

Πt−θ,t =

(
θ∏

τ=1

mgt−τ+1

)

. (B.64)

Then,

lim
θ→∞

q−θ
∗ E[‖Πt−θ,t(ν)‖2] = 0 . (B.65)

Similarly, if we define

Π̂t,t+θ =
θ∏

τ=1

mΛ−1gt+τ−1Λ .

then

lim
θ→∞

q−θ
∗ E[‖Π̂t,t+θ‖

2] = 0 . (B.66)
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Proof of Proposition 8. For simplicity, we normalize γ/w = 1. Recall that S is the set of
symmetric matrices, and S(a, b) is the set of positive semi-definite matrices with eigenvalues
between a and b.

Equation (B.58) can be rewritten as

m̃
(
Λ−1/2ΣΛ−1/2 + I + Λ−1/2Et[gt+1Λ

1/2(I − m̃t+1)Λ
1/2gt+1]Λ

−1/2
)
m̃ = m̃ . (B.67)

Define the map

Ξ(Z) = m̃Λ−1/2Et[gt+1Λ
1/2ZΛ1/2gt+1]Λ

−1/2m̃ (B.68)

mapping the cone of positive semi-definite matrices into itself. Then, (B.67) implies that

Ξ(I − m̃) = m̃ − m̃2 − m̃Λ−1/2ΣΛ−1/2m̃ < m̃(I − m̃) ≤ q∗(I − m̃) . (B.69)

Now, the map Ξ leaves the proper cone S(0, +∞) invariant and hence, by the Krein and
Rutman (1950) theorem, its spectral radius corresponds to a strictly positive eigenvalue
λ∗ > 0. Let Z ∈ S(0, +∞) be the corresponding eigenvector. Then,

Ξ(Z) = λ∗ Z .

Since I − m̃ is strictly positive definite, there exists a constant a∗ > 0 such that aZ ≤ I − m̃
if and only if a ≤ a∗. Then,

λa∗Z = Ξ(a∗Z) ≤ Ξ(I − m̃) < q∗ (I − m̃)

Thus, (λa∗/q∗)Z ≤ I − m̃ implying that, by the definition of a∗, we must have λ/q∗ < 1.
Note also that a transformation

Ξ̂(Z) = A−1m̃Et[Λ
−1/2gt+1Λ

1/2AZA′Λ1/2gt+1Λ
−1/2]m̃(A′)−1

is similar to Ξ for any invertible matrix A. Hence, Ξ and Ξ̂ have the same spectral radius.
Pick A = m̃Λ−1/2. Then,

Ξ̂(Z) = Et[gt+1Λ
1/2m̃Λ−1/2ZΛ−1/2m̃Λ1/2gt+1] = Et[gt+1m

′Zmgt+1] .

By direct calculation,

E[Π′
t−θ,tΠt−θ,t] = Ξ̂θ(I) ,

and

E[Π̂t,t+θΠ̂
′
t,t+θ] = Ξθ(I) ,

and the claim follows. �
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B.4 Proofs of Propositions 2 and Proposition 3

Lemma 8 For simplicity, we normalize γ/w = 1. Consider the map F mapping the convex
set of S(0, 1)-valued matrix functions into itself and defined via

F (m̃t) =
(
Λ−1/2ΣΛ−1/2 + I + Λ−1/2Et[gt+1Λ

1/2(I − m̃t+1)Λ
1/2gt+1]Λ

−1/2
)−1

. (B.70)

This map is strictly monotone increasing in the positive semi-definite order and hence has
at least one fixed point in S(0, 1). The set of fixed points has a unique maximal and a unique
minimal element. The minimal element is obtained by iterating F on 0. The maximal element
is obtained by iterating F on I.

Proof of Lemma 8. The proof follows directly from the fact that the map A → A−1 is
monotone decreasing in the positive semi-definite order, and the same is true for the map
m̃t+1 → Et[gt+1Λ

1/2(I − m̃t+1)Λ
1/2gt+1]. �

In the case when μ is stochastic, things are a bit more tricky, as is shown by the following
lemma.

Lemma 9 Suppose that μ(st) = εμ̃(st), gw
t = gw + O(ε), rf

t = rf + O(ε). Then,

Gt = G + O(ε) (B.71)

where G = E[vec(gt)vec(gt)
′] and hence, for every solution m̃ ∈ S(0, 1) to (B.58) and any

sufficiently small ε > 0 there exists a unique solution m̃t to (B.56) satisfying

m̃t = m̃ + O(ε) . (B.72)

Proof of Lemma 9. The proof follows directly from the implicit function theorem and the
fact that the map F from Lemma 8 is strictly monotone on S(0, 1) and (by direct calculation)
has a non-degenerate Jacobian. �

Proof of Proposition 2. By Lemma 8, there exists a m̃ ∈ S(0, 1) solving (B.58). By
Proposition 8, the technical conditions (B.49) and (B.50) are satisfied. Lemma 7 implies
that m solves (B.46) and hence Lemma 6 implies that the policy π is optimal. Its uniqueness
follows from the strict concavity of the objective. �

Proof of Proposition 3. By Lemma 8, there exists a m̃ ∈ S(0, 1) solving (B.58). By
Lemma 9, there exists a m̃t solving (B.56) satisfying mt = m̃ + O(ε). By a small modification
of the proof of Lemma 8, the technical conditions (B.19) and (B.20) are satisfied. Lemma 7
implies that mt solves (B.55) and hence Lemma 5 implies that the policy

π∗
t = π(st, st−) =

∞∑

θ=0

Nt−θ,tQ(st−θ) . (B.73)

is optimal with

Qt = Et

[
∞∑

τ=0

Ñt,t+τct+τMarkowitzt+τ

]

(B.74)
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and

Nt,t+τ =
θ∏

τ=1

mt−τ+1 gt−τ+1 (B.75)

and

Ñt,t+τ =
θ∏

τ=1

mt−τ+1 Λ−1gt−τ+1Λ . (B.76)

and ct = mtΛ
−1Σ. Its uniqueness follows from the strict concavity of the objective. Now,

substituting mt = m + O(ε) into these equations, we get that π∗
t differs from (20) by O(ε)

(technical conditions (B.19)-(B.20) ensure that the infinite sum also is O(ε).) The proof is
complete. �

B.5 Proofs of Propositions 4 and 5

We have m = Λ−1/2m̃Λ1/2 and hence m and m̃ have identical eigenvalues, and the claim of
Proposition 4 follows from Lemma 4 and the monotonicity of the map F.

The convergence of m to zero when w → 0 follows directly from (B.58). When w → ∞,
to prove convergence we need to show that the technical conditions (B.49) and (B.50) hold
uniformly when w → ∞. By Proposition 8, to this end we need to show that q∗, the maximal
eigenvalue of m̃ stays uniformly bounded away from 1. This follows from Lemma 4: Since
m̃ ≤ m̃(ḡ), it suffices to establish this fact for m̃(ḡ). From the proof of Lemma 3, we have

m̃(ξ) = ξ−1/2m̂ξ−1/2

where

m̂ = 0.5(Σ̂ − (Σ̂2 − 4I)1/2) = 2(Σ̂ + (Σ̂2 − 4I)1/2)−1 (B.77)

and

Σ̂ = ξ−1/2Σ̃ξ−1/2 = γw−1ξ−1/2Λ−1/2ΣΛ−1/2ξ−1/2 + ξ−1 + ξ .

and hence Σ̂ → ξ−1 + ξ when w → ∞. Thus,

m̃ → 0.5ξ−1(ξ−1 + ξ − |ξ − ξ−1|)

Suppose that ξ > 1. Then, we get m̃ = ξ−2 < 1. If ξ < 1, then we get m̃ → 1.

B.6 On the Optimality of Portfolio-ML

Given a function A(∙), denote

Π∗
t (A(∙), ~s) =

∞∑

θ=0

(
θ∏

τ=1

mgt−τ+1

)

(I − m)A(st−θ) . (B.78)

We formalize the above observations in the following lemma.
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Lemma 10 Suppose that μ(st) = εμ̃(st) where ε is a small number. Then, the solution to
the aim optimization problem

max
A(∙)

E

[

μ(st)
′Π∗

t (A(∙), ~s)

−
w

2

(
Π∗

t (A(∙), ~st) − gtΠ
∗
t (A(∙), ~st−1)

)′
Λ
(
Π∗

t (A(∙), ~st) − gtΠ
∗
t (A(∙), ~st−1)

)

−
γ

2
(Π∗

t (A(∙), ~st))
′ Σ (Π∗

t (A(∙), ~st))

]
(B.79)

coincides with (21) up to terms of the order ε2.

Lemma 10 reduces the infeasible (due to infinite history dependence) portfolio optimization
problem (9) to a feasible aim optimization problem (B.79), where only the function A(st)
of the current state needs to be optimized. As we now show, it is possible to use machine
learning methods to further reduce (B.79) to a linear-quadratic problem that can be solved
analytically. We will need the following assumption.

Assumption 1 Let s−i denote the vector of signals for all stocks except i. There exists a
function a(si, s−i) such that (A(st))i = ai(si,t, s−i,t).

Assumption 1 is not restrictive and naturally holds whenever Λ i,j and Σi,j only depend
on si, sj for any pair of stocks i, j. It ensures that the dependence of the aim on signals is
the same for all stocks.

Assumption 2 Suppose that a family of functions {fk(s)}k≥1 has the universal approxima-
tion property: For any ε > 0 there exists a P > 0 and a vector β ∈ RP such that

‖a(s) −
∑

k

βkfk(s)‖2 ≤ ε . (B.80)

Let now F (s) = (fk(si, s−i))
n,P
i,k=1. Then, Assumptions 1 and 2 imply the existence of a

vector β such that

‖A(s) − F (s)β‖2 ≤ ε , (B.81)

and hence we can rewrite (B.78) as

πt = Xtβ + O(ε) , (B.82)

where

Xt ≡

[
∞∑

θ=0

(
θ∏

τ=1

mgt−τ+1

)

(I − m)f(st−θ)

]

. (B.83)
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Using this formulation for πt in the objective (B.79), we can rewrite it as

E
[
r′t+1Xtβ −

γ

2
β′X ′

tΣXtβ −
w

2
(Xtβ − gtXt−1β)′ Λ (Xtβ − gtXt−1β)

]

=
1

T
E




r′t+1Xt︸ ︷︷ ︸

≡r̃′t+1

β −
1

2
β′ [γX ′

tΣXt + w(Xt − gtXt−1)
′Λ(Xt − gtXt−1)]︸ ︷︷ ︸

≡Σ̃t

β






≡ E[r̃′t+1]β −
1

2
β′E[Σ̃t]β .

(B.84)

and the optimal β is given by

β∗ = E[Σ̃t]
−1E[r̃t+1] (B.85)

Uniform boundedness of all coefficients implies that the solution to the approximate opti-
mization problem achieves approximate optimum in (B.79). Thus, we can maximize utility
by maximizing this quadratic equation in the unknown parameter vector β.

Proposition 9 (Portfolio-ML) Suppose that μ(st) = εμ̃(st) where ε is a small number.
Let βT be a finite sample counter-part of (B.85). Then, in the limit as T → ∞, βT converges
to β∗. Furthermore, the optimal portfolio (24) achieves the optimal utility (9) up to an error
of the order ε2 + ε, where ε is defined in (B.80).

B.7 Proofs related to Economic Feature Importance

The optimal portfolio admits a simpler analytical expression when transaction costs are small
as seen in the following result.

Proposition 10 Suppose that ‖Λ‖ is small and Λ is diagonal. Then, the aim portfolio At

is given by

At = Markowitzt

+ Σ−1Et[Λgt+1Markowitzt+1 − gt+1Λgt+1Markowitzt)] + O(‖Λ‖2) ,
(B.86)

while investor’s utility is given by the same expression as in Proposition 7 .

Proof of Proposition 7 and Proposition 10. Under the made assumption, we have

mt = Σ−1Λ − Σ−1(Λ + Et[gt+1Λgt+1])Σ
−1Λ + O(ε3)

and therefore

ct = mtΛ
−1Σt. = I − Σ−1(Λ + Et[gt+1Λgt+1]) + O(ε2) .

61

Electronic copy available at: https://ssrn.com/abstract=4187217



Let νt = Markowitzt. Then,

At = (I − mt)
−1

∞∑

τ=0

Et [Mt,t+τ ct+τ Markowitzt+τ ]

= (I − mt)
−1(ctνt + Et[mtΛ

−1Λgt+1ct+1νt+1]) + O(ε2)

= (I + Σ−1Λ)
(
ctνt + Et[Σ

−1ΛΛ−1Λgt+1ct+1νt+1]
)

+ O(ε2)

= (I + Σ−1Λ)
((

I − Σ−1(Λ + Et[gt+1Λgt+1])
)
νt

+ Et[Σ
−1ΛΛ−1Λgt+1

(
I − Σ−1(Λ + Et[gt+1Λgt+1])

)
νt+1]

)
+ O(ε2)

= (I − Σ−1Et[gt+1Λgt+1])νt + Et[Σ
−1Λgt+1νt+1] + O(ε2)

= νt + Σ−1Et[Λgt+1νt+1 − gt+1Λgt+1νt)] + O(ε2) .

(B.87)

and

πt = mtgtπt−1 + (I − mt)At

= mtgtνt−1 + (I − mt)(νt + Σ−1Et[Λgt+1(νt+1 − gt+1νt)]) + O(ε2)

= νt + Σ−1Et[Λgt+1(νt+1 − gt+1νt)] + Σ−1Λ(gtνt−1 − νt) + O(ε2)

= νt + ξt + O(ε2) .

(B.88)

Hence

E[μ(xt)
′πt − 0.5π′

tΣπt − 0.5(πt − gt πt−1)
′Λ(πt − πt−1)]

= E[μ(xt)
′πt − 0.5π′

t(Σ + Λ + Et[gt+1Λgt+1])πt + π′
t−1gtΛπt]

= E[μ′
t(νt + ξt)

− 0.5(νt + ξt)
′(Σ + Λ + Et[gt+1Λgt+1])(νt + ξt)

+ (νt−1 + ξt−1)
′gtΛ(νt + ξt)]

= 0.5E[μ′
tΣ

−1μt] + E[μ′
t(Σ

−1Et[Λgt+1(νt+1 − gt+1νt)] + Σ−1Λ(gtνt−1 − νt))]

− E[ν ′
tΣξt] − 0.5E[ν ′

t(Λ + Et[gt+1Λgt+1]))νt]

+ E[ν ′
t−1gtΛνt−1]

= 0.5E[μ′
tΣ

−1μt] − 0.5E[ν ′
t(Λ + Et[gt+1Λgt+1]))νt] + E[ν ′

tgt+1Λνt+1]

= 0.5E[μ′
tΣ

−1μt] − 0.5E[(νt − gtνt−1)
′Λ(νt − gtνt−1)] + O(ε2) .

�

C Data and Empirical Results

C.1 Information of Stock Characteristics (Features)

Table C.1 shows the security characteristics that we use as features for all portfolio methods.
The features are a subset of the 153 characteristics used in Jensen et al. (2022) plus 1-year
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trailing volatility (rvol 252d),18 where the subset is chosen to have sufficient coverage in the
early parts of our sample. Specifically, we select all features with a non-missing value for at
least 70% of our sample by the end of 1952. The cluster assignments in Table C.1 are also
from Jensen et al. (2022) except rvol 252d which we assign to the low risk cluster.

Table C.1: Feature Information

Characteristic Cluster Characteristic Cluster Characteristic Cluster
1 cowc gr1a accruals 40 ivol capm 252d low risk 79 opex at quality
2 oaccruals at accruals 41 ivol ff3 21d low risk 80 qmj prof quality
3 oaccruals ni accruals 42 rmax1 21d low risk 81 qmj safety quality
4 taccruals at accruals 43 rmax5 21d low risk 82 sale bev quality
5 taccruals ni accruals 44 rvol 21d low risk 83 corr 1260d seasonality
6 fnl gr1a debt issuance 45 turnover 126d low risk 84 coskew 21d seasonality
7 ncol gr1a debt issuance 46 zero trades 126d low risk 85 dbnetis at seasonality
8 nfna gr1a debt issuance 47 zero trades 21d low risk 86 kz index seasonality
9 noa at debt issuance 48 zero trades 252d low risk 87 lti gr1a seasonality
10 aliq at investment 49 rvol 252d low risk 88 pi nix seasonality
11 at gr1 investment 50 prc highprc 252d momentum 89 seas 11 15an seasonality
12 be gr1a investment 51 ret 12 1 momentum 90 seas 11 15na seasonality
13 capx gr1 investment 52 ret 3 1 momentum 91 seas 2 5an seasonality
14 coa gr1a investment 53 ret 6 1 momentum 92 seas 6 10an seasonality
15 col gr1a investment 54 ret 9 1 momentum 93 ami 126d size
16 emp gr1 investment 55 seas 1 1na momentum 94 dolvol 126d size
17 inv gr1 investment 56 ocf at chg1 profit growth 95 market equity size
18 inv gr1a investment 57 ret 12 7 profit growth 96 prc size
19 lnoa gr1a investment 58 sale emp gr1 profit growth 97 iskew capm 21d short-term reversal
20 mispricing mgmt investment 59 seas 1 1an profit growth 98 iskew ff3 21d short-term reversal
21 ncoa gr1a investment 60 tax gr1a profit growth 99 ret 1 0 short-term reversal
22 nncoa gr1a investment 61 dolvol var 126d profitability 100 rmax5 rvol 21d short-term reversal
23 noa gr1a investment 62 ebit bev profitability 101 rskew 21d short-term reversal
24 ppeinv gr1a investment 63 ebit sale profitability 102 at me value
25 ret 60 12 investment 64 intrinsic value profitability 103 be me value
26 sale gr1 investment 65 ni be profitability 104 bev mev value
27 seas 2 5na investment 66 o score profitability 105 chcsho 12m value
28 age leverage 67 ocf at profitability 106 debt me value
29 aliq mat leverage 68 ope be profitability 107 div12m me value
30 at be leverage 69 ope bel1 profitability 108 ebitda mev value
31 bidaskhl 21d leverage 70 turnover var 126d profitability 109 eq dur value
32 cash at leverage 71 at turnover quality 110 eqnpo 12m value
33 netdebt me leverage 72 cop at quality 111 fcf me value
34 tangibility leverage 73 cop atl1 quality 112 ni me value
35 beta 60m low risk 74 gp at quality 113 ocf me value
36 beta dimson 21d low risk 75 gp atl1 quality 114 sale me value
37 betabab 1260d low risk 76 mispricing perf quality 115 seas 6 10na value
38 betadown 252d low risk 77 op at quality
39 ivol capm 21d low risk 78 op atl1 quality

Note: The table shows the security characteristics we use as features for the portfolio methods. The char-
acteristics are from Jensen et al. (2022), and we refer to this paper for details about the construction
methodology.

C.2 Portfolio Tuning

Panel A shows the optimal hyper-parameters for the RF method that predicts expected
returns. The 1 month model is used by all methods except Portfolio-ML, while the expected
return over 2-6 and 7-12 months is only used by Multiperiod-ML and Multiperiod-ML ∗. Panel

18We add 1-year trailing volatility, because of its close connection to the covariance matrix. For example,
if volatility is unrelated to expected returns, the optimal portfolio should have a higher allocation to low
volatility assets all else equal.
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B shows the optimal hyper-parameters for Portfolio-ML and the second layer of portfolio
tuning used by Multiperiod-ML∗ and Static-ML∗. Section 4.3 describes how we choose
hyper-parameters and table 1 the range of possible hyper-parameters.

Panel A: Expected Return Tuning
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Panel B: Portfolio Tuning
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Figure C.1: Optimal Portfolio Hyper-parameters

Note: Panel A shows the optimal hyper-parameters used for predicting expected returns via. ridge regression
of RF transformed features. Panel B shows the optimal hyper-parameters for selecting portfolio weights for
Portfolio-ML, Multiperiod-ML∗ and Static-ML∗. We show the range of possible hyper-parameters in table
1.

64

Electronic copy available at: https://ssrn.com/abstract=4187217



C.3 Feature Persistence and Importance across Return Horizons

Figure C.2 shows the monthly autocorrelation of all prediction features. Features grouped
into themes following Jensen et al. (2022). We see that most features are highly persistent
from month to month but that we also include a substantial amount of fast-moving predictors.
These high-frequency predictors are particularly present in the low risk, seasonality, and
short-term reversal themes. Figure C.3 shows a measure of feature importance for each of
the three models that predicts future returns. The short-term model that predicts returns one
month ahead is used by all portfolio methods except Portfolio-ML, while only Multiperiod-
ML uses the two other longer-term models. Notably, feature importance for the short-term
model differs from the others by distributing importance more evenly across themes. In
contrast, the two longer-term models mainly use value and momentum features.
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Figure C.2: Feature Autocorrelation

Note: The figure shows the monthly autocorrelation for each feature in our sample. We first compute each
feature’s monthly autocorrelation for all stocks with at least 5 years of monthly data. Next, we average the
stock-level autocorrelations to arrive at the final estimate. The features are grouped by theme and sorted
by average theme autocorrelation.
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Figure C.3: Feature Importance across Return Horizons

Note: The figure shows feature importance for the three random feature based models that predict returns in
month t+1, the average return over month t+2 to t+6, and the average return over month t+7 to t+12. For
each model, we randomly permute the associated features for each theme while keeping all other features at
their actual value. We then implement each method based on this counterfactual data and measure feature
importance as the difference in the mean-squared error relative to the implementation that uses the actual
data. For comparability, we re-scale the difference by scaling all differences by the largest difference. Hence,
feature importance is measured relative to the best feature theme within a specific horizon.
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