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ABSTRACT

What explains cross-sectional dispersion in stock valuation ratios? We find that 75%
of dispersion in price-earnings ratios is reflected in differences in future returns, while
only 25% is reflected in differences in future earnings growth. This holds at both the
portfolio-level and the firm-level. We reconcile these conclusions with previous literature
which has found a strong relation between prices and future profitability. Our results
support models in which the cross-section of price-earnings ratios is driven mainly by
discount rates or mispricing rather than future earnings growth. Evaluating six models
of the value premium, we find that most models struggle to match our results, however,
models with long-lived differences in risk exposure or gradual learning about parameters
perform the best. The lack of earnings growth differences at long horizons provides new
evidence in favor of long-run return predictability. We also show a similar dominance
of predicted returns for explaining the dispersion in return surprises.
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I. Introduction

A central feature of the aggregate stock market is the dominance of future returns in ex-

plaining price movements (Cochrane 2011). Using prices scaled by cash flows, Campbell and

Shiller (1988a,b), Cochrane (1992, 2008) show that most variation in aggregate price ratios

is related to future returns rather than future cash flow growth.1 Subsequent work (Fama

and French 1995; Cohen, Polk, and Vuolteenaho 2003) focuses on the cross-section of value

and growth portfolios and argues that the cross-section is quite different from the aggregate

time series. They find that cross-sectional differences in future returns only explain a small

portion of cross-sectional differences in price-book ratios.2 This apparent contrast between

the cross-section and the aggregate time series has supported a common view that stock

markets are “micro-efficient but macro-inefficient.”3

In this paper, we argue that the cross-section of prices is actually quite similar to the

aggregate time series. Like the aggregate time series, differences in cross-sectional price-

earnings ratios are primarily explained by differences in future returns, not future earnings

growth. This observation holds both at the portfolio level, using value and growth portfolios,

and at the individual firm level. These results indicate that risk premia and/or mispricing

explain most cross-sectional differences in price-earnings ratios, which has important implica-

tions for cross-sectional asset pricing models. Using accounting identities, we show that the

previous findings on price-book ratio differences are driven by the fact that scaling by book

value introduces a large amount of additional dispersion that is not tied to future earnings

growth or future returns. Additionally, we show that the well-documented relationship be-

tween price-book ratios and future profitability emerges from a contemporaneous correlation

between price-book ratios and current profitability, rather than price-book ratios predicting

future earnings growth.
1While there is debate whether future cash flow growth plays a zero or non-zero role in explaining aggregate

price ratios, its role is consistently smaller than the role of future returns (Koijen and Nieuwerburgh, 2011).
2Vuolteenaho (2002) similarly provides evidence that cross-sectional differences in price-book ratios are

more related to differences in future profitability than future returns.
3See Samuelson (1998); Jung and Shiller (2005).
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Our analysis covers all US common stocks listed on NYSE, AMEX, and NASDAQ from

1963-2020. We study dispersion in price-earnings ratios across individual firms as well as

across the classic growth and value portfolios. For the portfolios, we estimate a variant of the

Campbell-Shiller decomposition and find that differences in future returns explain over 75%

of the cross-sectional differences in price-earnings ratios, while differences in future earnings

growth explain less than 25%. We then introduce a novel decomposition for price-earnings

ratios which can be applied at the firm level and show that the estimated results are similar

to the portfolio-level estimates. In other words, stocks with high price-earnings ratios are

largely characterized by lower future returns rather than higher future earnings growth.

How does this finding fit with cross-sectional asset pricing models? We find that many

standard models of cross-sectional risk premia and mispricing struggle to quantitatively

match our results, such as models of growth options (Berk, Green, and Naik, 1999), costly

reversibility of capital (Zhang, 2005), duration risk (Lettau and Wachter, 2007), and ex-

trapolation with overconfidence (Alti and Tetlock, 2014). While these models do generate

a short-term value premium, differences in future returns account for less than 10% of the

dispersion in price-earnings ratios. Instead, these models predict that more than 90% of

the dispersion in price-earnings ratios is explained by future earnings growth. To better

match our findings, models can incorporate long-lived differences in risk exposure, such as

the investment-specific technology risk of Kogan and Papanikolaou (2014), or substantial

mispricing that is slowly resolved over time, such as the learning about firm-specific mean

earnings growth model of Lewellen and Shanken (2002). Overall, Lewellen and Shanken

(2002) is the closest to our empirical findings, as agents’ incorrect beliefs about each firm’s

mean earnings growth allows the model to have a strong relationship between price-earnings

ratios and future returns, while having little to no relationship between price-earnings ratios

and realized future earnings growth.4

4This is similar to the empirical results of De la O and Myers (2021) for the aggregate stock market,
where investors appear to believe that stock price-earnings ratios are related to future cash flow growth but
mistakes in their expectations cause stock prices ratios to be objectively related to future returns.
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Given the importance of these results for the cross-sectional asset pricing literature, we

explicitly reconcile our conclusions with previous findings documenting a strong relationship

between price-book ratios and future profitability. We show that future profitability is ap-

proximately equal to the sum of future earnings growth and the current earnings-book ratio.

Intuitively, in order to have high future profitability, a firm must either increase its earnings

or already have high current earnings relative to book (i.e., high current profitability). We

then demonstrate that the documented relationship between the price-book ratio and future

profitability is driven almost entirely by the correlation between the current price-book ratio

and the current earnings-book ratio. In other words, the price-book ratio is related to future

profitability not because it is informative about the future earnings of a stock, but instead

because it is related to current profitability.

Throughout the paper, we incorporate several extensions that strengthen our conclusions.

Our main price-earnings ratio decomposition uses buy-and-hold earnings growth and returns

over a span of fifteen years. To project these results into an infinite horizon, we employ a

VAR model and estimate an infinite horizon decomposition that supports the dominance of

returns at longer horizons. To confirm that our conclusions are not influenced by fluctuations

in earnings in the denominator of price-earnings ratio, we repeat our analysis normalizing

prices with a three-year-smoothed measure of earnings, yielding similar outcomes. To en-

sure that our findings are not due to aggregating firms into portfolios, we provide a novel

firm-level decomposition. Unlike the Campbell-Shiller decomposition, this new decomposi-

tion effectively handles negative firm-level earnings. The analysis confirms that firm-level

earnings yields are largely explained by future returns rather than future earnings growth.

Furthermore, we evaluate the evolution of return dominance over time via a rolling estima-

tion approach. Despite the fluctuating nature of the return contribution to price-earnings

ratio dispersion over time, it has consistently dominated the contribution of earnings growth.

While our primary focus is explaining the level of price-earnings ratios, our results also

have direct implications for return predictability. We perform three exercises that illustrate
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the tight relation between price-earnings ratio dispersion and expected returns. These three

exercises deal with cumulative long-term returns, non-cumulative long-term returns, and

current return surprises. First, we test whether price-earnings ratios or price-book ratios

are a stronger predictor of long-term cumulative results. While the price-book ratio is well

established as the standard price ratio for predicting the cross-section of monthly returns

(Fama and French, 1992), we find that it is dominated by the price-earnings ratio for pre-

dicting long-term returns. In multivariate regressions, the price-earnings ratio completely

drives out the price-book ratio for predicting returns at horizons of 1 to 10 years. This occurs

because the price-book ratio not only reflects future returns and future earnings growth, but

also reflects the current earnings-book ratio.5

Second, we study the predictability of non-cumulative long-term returns. Consistent

with Keloharju, Linnainmaa, and Nyberg (2021)’s findings, we cannot reject the null that

non-cumulative returns are unpredictable at horizons beyond four years. However, in the

spirit of Lewellen (2004) and Cochrane (2008), we show that imposing plausible bounds on

the persistence of the price-earnings ratio substantially increases the significance of return

predictability. So long as the price-earnings ratio has a persistence less than one, all mean-

reversion in the price-earnings ratio must be reflected in non-cumulative returns or non-

cumulative earnings growth. Because of this, the lack of predictable earnings growth provides

strong evidence that returns are significantly predictable beyond four years.

Third, we decompose price-earnings ratio innovations and return surprises to measure

the relative importance of changes in expected returns and changes in expected earnings

growth.6 Using a VAR model, we find that changes in expected future returns account for

a substantially larger share of the variation in price-earnings ratio innovations and return
5This is consistent with the findings of Ball et al. (2020) and Golubov and Konstantinidi (2019), who

argue that the price-book ratio only predicts returns because it is a noisy proxy for the ratio of price to
retained earnings or the ratio of price to fundamental value.

6Just as the level of the price-earnings ratio is connected to the level of future returns and future earnings
growth, innovations to the price-earnings ratio are related to changes in expected future returns and expected
future earnings growth. Following Campbell (1991), return surprises (i.e., unexpected current returns) are
also tightly connected to changes in expected future returns and expected future earnings growth.
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surprises than changes in expected future earnings growth. Importantly, we reconcile our

findings with the results of Vuolteenaho (2002) and Lochstoer and Tetlock (2020), who find a

large role for cash flow news in return surprises. We show that their measure of cash flow news

is equivalent to changes in expected future earnings growth plus the current earnings growth

surprise. In line with the idea that earnings growth is volatile and difficult to predict, we find

that current earnings growth surprises are volatile while changes in expected future earnings

growth are not. Thus, almost all the variation in their measure of cash flow news comes from

unexpected current earnings growth, rather than information about future earnings growth.

In summary, this paper contributes to a growing literature studying the cross-section of

prices and price ratios. While there is a broad literature studying the cross-section of short-

term returns,7 relatively less attention has been paid to prices or price ratios.8 Notable

exceptions are Cohen et al. (2009); Cho et al. (2022, 2023); van Binsbergen et al. (2023) and

Cho and Polk (2023). In particular, our analysis builds on Cohen, Polk, and Vuolteenaho

(2003), who study cross-sectional differences in price-book ratios and find that they are

largely explained by future profitability. As mentioned above, we reconcile our findings

with them by extending their decomposition of price-book ratios and demonstrating that

the cross-section of price-book ratios is not strongly related to future cash flow growth.

Similarly, we reconcile with Vuolteenaho (2002) and Lochstoer and Tetlock (2020) by showing

that their measure of cash flow news is largely unrelated to future cash flow growth and

instead reflects unexpected current earnings growth.9 Overall, our results indicate that

cross-sectional variation in price ratios and aggregate time series variation in price ratios are

similarly uninformative about cash flow growth, which runs counter to the idea that markets

are micro-efficient and supports models in which a single mechanism drives both phenomena

(Santos and Veronesi, 2006; Papanikolaou, 2011).
7See Nagel (2013) for a summary.
8See Cochrane (2011) for a discussion, “When did our field stop being ’asset pricing’ and become ’asset

expected returning?’”
9Hereafter, we refer to Fama and French (1995), Vuolteenaho (2002), Cohen, Polk, and Vuolteenaho

(2003) as FF95, V02, and CPV.
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The paper is organized as follows. Section II discusses the data used for our exercises.

Section III derives and estimates the variance decomposition linking price-earnings ratios to

future earnings growth and returns and reconciles our results with the previous literature

on profitability. Section IV extends our results by (i) presenting a rolling estimation of

the role of future returns and the role of future earnings growth and (ii) proposing and

estimating a novel firm-level decomposition for earnings yields. Section V shows how our

results compare to the predictions of six asset pricing models. Section VI performs our three

exercises on cumulative long-term returns, non-cumulative long-term returns, and return

surprises. Section VII concludes.

II. Data

To understand the cross-section of stock prices, we study all US common stocks from 1963

to 2020. For the analysis involving portfolios, we focus on value and growth portfolios as this

allows us to connect with the long literature on value versus growth stocks. Specifically, we

sort stocks into portfolios based on their price-book ratios such that each portfolio has equal

market value. We use five portfolios for our main analysis to reflect the classic value and

growth portfolios, but we show in Appendix E that our results are robust to using a larger

number of portfolios.10 Further, we show in Section IV.B that our results can be extended

to individual firms and, in Appendix Table AV, we show similar results for E/P-sorted

portfolios. For the value and growth portfolios, we track buy-and-hold returns, earnings

growth, profitability, the price-book ratio, and the price-earnings ratio. Below, we discuss

the data construction in more detail.

The sample of stocks consists of all common stocks (share code 10 and 11) listed on NYSE,

AMEX, and NASDAQ. The firm-level accounting variables are obtained from Compustat

starting in 1963. We obtain monthly stock returns, prices, shares outstanding, dividends,
10These portfolios capture over 84% of the firm-level cross-sectional variation in price-book ratios. For our

sample, the standard deviation across firms in the log price-book ratio is 0.92. For our five portfolios, the
standard deviation of log price-book ratios is 0.77.
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and returns from the Center for Research in Security Price (CRSP). Detailed data definitions

are as follows. The total price for a firm is the price per share multiplied by the shares

outstanding. Following Davis, Fama, and French (2000) and CPV, we define book value as

stockholders’ book equity, plus deferred taxes and investment tax credit if available, minus

the book value of preferred stock. If stockholders’ book equity is not available at Compustat,

we define it as the book value of common equity plus the par value of preferred stock, or

the book value of assets minus total liabilities in that order. Depending on availability, we

use redemption, liquidating, or par value for the book value of preferred stock. As in CPV,

we drop firms where the ratio of price to book value is less than 0.01 or greater than 100 to

remove likely data errors. We define earnings as Compustat net income (item NI) excluding

extraordinary items and discontinued operations (item XIDO), special items (item SPI), and

non-recurring income taxes (item NRTXT).11

With these variable definitions, we perform a portfolio-level decomposition, as well as

a firm-level decomposition. Specifically, in each year t, we sort stocks based on the lagged

ratio of price to book, where price is from December of calendar year t and book is from the

fiscal year ending in calendar year t− 1. Having sorted firms into portfolios, we track buy-

and-hold returns, earnings growth, profitability, the price-book ratio, and the price-earnings

ratio up to 15 years without rebalancing based on value-weighted returns and portfolio-level

earnings, book, and market value. For firms who delist during our buy-and-hold periods, we

reinvest them one year before they exit.12 There is substantial variation across the portfolios

in both log price-earnings ratios and log price-book ratios. The pooled standard deviation of

price-earnings ratios (price-book ratios) is 0.50 (0.77). As one would expect, the log price-

earnings ratios (peit) are significantly correlated with the log price-book ratios (pbit), with a

correlation of 0.85∗∗∗.
11To account for possible data errors or extreme outliers, we winsorize earnings at the 1% level.
12In Table AIII we show that our results still hold if we reinvest in the portfolios according to the delisting

returns of exiting firms.
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III. Cross-section of price ratios

In this section, we use a variance decomposition to show that the cross-sectional dispersion

in portfolio price-earnings ratios, pei,t, must be explained by future earnings growth or future

returns. We then estimate the decompositions using long-term earnings growth and returns,

as well a separate estimation using a VAR model, and consistently find that future returns

explain over twice as much of the cross-sectional dispersion in pei,t as differences in future

earnings growth. Rephrased, pei,t is largely informative about future returns rather than

future earnings growth. Section IV shows similar results at the firm level.

We then reconcile our results with prior research that argued the cross-section of price-

book ratios, pbi,t, is largely informative about future cash flows rather than future returns.

This literature has focused on future profitability, rather than future earnings growth to

measure future cash flows. We first present a new variance decomposition for pbi,t that

measures the importance of future earnings growth relative to future returns for explaining

cross-sectional dispersion in pbi,t. Analogous to our pei,t results, we find that pbi,t dispersion

is more informative about future returns than future earnings growth. We then connect this

to the prior results on profitability by showing that future profitability can be decomposed

into the current earnings-book ratio and future earnings growth, i.e., a current and a future

component. We show that pbi,t is correlated with the current component and that this

correlation is large enough to explain prior findings even though pbi,t is not informative

about the future component.

A. Decomposing cross-sectional variance

Movements in the price-earnings ratio must reflect changes in future earnings growth or future

returns. This is a variant of the standard Campbell and Shiller (1988a) decomposition. We

start from the approximate log-linearized return, which states the one-period return in terms
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of earnings growth ∆et+1 and the price-earnings ratio pet, all in logs:

rt+1 ≈ κ+∆et+1 + ρpet+1 − pet, (1)

where κ and ρ < 1 are constants.13

To understand the cross-section of stock prices, let p̃ei,t be the cross-sectionally demeaned

price-earnings ratio of portfolio i and let ∆ẽi,t+1 and r̃i,t+1 be the cross-sectionally demeaned

earnings growth and returns. Rearranging and iterating equation (1), we see that a higher

than average price-earnings ratio must indicate higher than average future earnings growth,

lower than average future returns, or a higher than average future price-earnings ratio,

p̃ei,t ≈
h∑

j=1

ρj−1∆ẽi,t+j −
h∑

j=1

ρj−1r̃i,t+j + ρhp̃ei,t+h. (2)

Equation (2) shows that movements in p̃ei,t must represent information about future

earnings growth, future returns, or the future price-earnings ratio. To measure the relative

importance of these three components, we decompose the variance of p̃ei,t into its covariance

with the three terms,

1 ≈

Cov

(
h∑

j=1

ρj−1∆ẽi,t+j, p̃ei,t

)
V ar

(
p̃ei,t

)︸ ︷︷ ︸
CFh

+

Cov

(
−

h∑
j=1

ρj−1r̃i,t+j, p̃ei,t

)
V ar

(
p̃ei,t

)︸ ︷︷ ︸
DRh

+ ρh
Cov

(
p̃ei,t+h, p̃ei,t

)
V ar

(
p̃ei,t

)︸ ︷︷ ︸
FPEh

. (3)

Note that V ar
(
p̃ei,t

)
is the average squared cross-sectionally demeaned price-earnings ratio,

which means it measures the average cross-sectional dispersion in price-earnings ratios. As a

result, the three terms in equation (3) tell us what portion of the cross-sectional dispersion

in price ratios is explained by future earnings growth, future returns, and the future price-

earnings ratio. Each component of equation (3) is simply the coefficient from a time fixed

effects regression of future earnings growth, future returns, and the future price-earnings

ratio on the current price-earnings ratio. Thus, we denote these three coefficients as cash
13Note that this approximation still holds even for non-dividend paying firms. Appendix A gives a full

derivation of the log-linearization with both zero and positive dividends and discusses the role of the payout
ratio.
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flow news CFh, discount rate news DRh, and future price-earnings ratio news FPEh, as

these regression coefficients quantify exactly how much a one unit increase in p̃ei,t predicts

higher future earnings growth, lower future returns, or a higher future price-earnings ratio.

Finally, by imposing a no-bubble condition, lim
h→∞

ρhp̃ei,t+h = 0, the price-earnings ratio

can be expressed solely in terms of future earnings growth and future returns,

p̃ei,t ≈
∞∑
j=1

ρj−1∆ẽi,t+j −
∞∑
j=1

ρj−1r̃i,t+j. (4)

Similarly, variation in the price-earnings ratio can be fully decomposed into cash flow news

and discount rate news,

1 ≈ CF∞ +DR∞. (5)

B. Empirical decomposition results

Table I and Figure 1 show the estimated values for cash flow news, discount rate news, and

future price-earnings ratio news from equation (3).14 A key benefit of equation (3) is that

it can be estimated separately at many different horizons h. We estimate our results for

horizons of one to fifteen years to align with CPV. Given that the longer horizon regressions

involve overlapping observations, we report for every coefficient the Driscoll-Kraay standard

errors, which account for very general forms of spatial and serial correlation, as well as the

block-bootstrap standard errors, following the Martin and Wagner (2019) procedure. More

importantly, rather than focusing on a single specific horizon, we emphasize broad patterns

in cash flow news and discount rate news which hold across many horizons.

At every horizon, a higher price-earnings ratio predicts higher future earnings growth

and lower future returns and these estimates are highly significant at nearly every horizon.

However, lower returns tend to play a larger role in explaining the cross-sectional dispersion in

price-earnings ratios. In other words, high price-earnings ratios are primarily predicting lower
14Throughout the paper, we use ρ = 0.9751, which is based on the average price-dividend ratio of the total

stock market, as explained in Appendix A.
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Table I

Decomposition of differences in price-earnings ratios
This table decomposes the cross-sectional dispersion of price-earnings ratios using equation (3). The first column describes the
horizon h at which the decomposition is evaluated. For each period, we form five value-weighted portfolios and track their
buy-and-hold earnings growth (

∑h
j=1 ρ

j−1∆ẽi,t+j), negative returns (−
∑h

j=1 ρ
j−1r̃i,t+j), and price-earnings ratio (p̃ei,t+h)

for every horizon up to fifteen years. The components CFh, DRh, and FPEh are the coefficients from univariate regressions
of earnings growth, negative returns and future price-earnings ratios on current price-earnings ratios. The final column shows
the coefficient from regressing the approximation error p̃ei,t −

(∑h
j=1 ρ

j−1∆ẽi,t+j −
∑h

j=1 ρ
j−1r̃i,t+j + ρhp̃ei,t+h

)
on p̃ei,t,

which shows the portion of price-earnings ratio dispersion that is accounted for by the approximation error. All variables
are cross-sectionally demeaned. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each
coefficient. The last row shows the components of the infinite horizon decomposition and their block-bootstrap standard errors.
Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to
2020.

Years ahead CFh DRh FPEh ηh

1 0.100*** 0.041 0.861*** -0.002
s.e.(D-K) [0.024] [0.034] [0.026] [0.004]
s.e.(boot) [0.021] [0.027] [0.023] [0.002]

3 0.097** 0.174*** 0.735*** 0.006
[0.038] [0.070] [0.051] [0.010]
[0.038] [0.065] [0.049] [0.010]

5 0.124*** 0.264*** 0.619*** 0.007
[0.037] [0.091] [0.071] [0.016]
[0.042] [0.093] [0.071] [0.017]

8 0.161*** 0.384*** 0.463*** 0.009
[0.038] [0.091] [0.076] [0.022]
[0.038] [0.091] [0.075] [0.027]

10 0.186*** 0.436*** 0.389*** 0.011
[0.035] [0.077] [0.069] [0.025]
[0.038] [0.082] [0.072] [0.033]

13 0.189*** 0.492*** 0.331*** 0.013
[0.042] [0.067] [0.05] [0.030]
[0.045] [0.079] [0.058] [0.041]

15 0.202*** 0.516*** 0.295*** 0.013
[0.039] [0.056] [0.043] [0.034]
[0.035] [0.070] [0.060] [0.046]

∞ 0.236*** 0.787*** – -0.023
s.e.(boot) [0.078] [0.082] – [0.066]
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future returns. At horizons of five, ten, and fifteen years, lower future returns account for

26.4%, 43.6%, and 51.6% of differences in price-earnings ratios while higher future earnings

growth only accounts for 12.4%, 18.6%, 20.2% respectively. As shown in Figure 1, for all

horizons beyond three years, we consistently find that DRh is more than twice as large as

CFh.

To gauge how well the approximate identity holds, the final column of Table I shows

the portion of dispersion in p̃ei,t attributed to the approximation error for each horizon

p̃ei,t −
(∑h

j=1 ρ
j−1∆ẽi,t+j −

∑h
j=1 ρ

j−1r̃i,t+j + ρhp̃ei,t+h

)
. This error reflects any differences

in payout ratios or higher order terms that are ignored in the first-order log linearization.

At every horizon, we find that the approximation holds quite well, with the approximation

error accounting for at most 2.3% of p̃ei,t variation.

In Tables II and AIII, we show that other price ratios, such as price-book ratios and

price-to-three-year-smoothed-earnings ratios, also predict future returns with substantially

larger coefficients than their coefficients for predicting earnings growth. We also show in

Tables AII and III that our results are robust to using different numbers of portfolios and

even individual firms. These results all indicate that differences in price ratios primarily

predict differences in future returns rather than differences in future earnings growth.

By itself, the fact that the price-earnings ratio predicts future returns is not surprising.

It has been well-documented that price ratios can predict the cross-section of returns. The

surprising element is that the price-earnings ratio predicts future returns much more than it

predicts future earnings growth. This dominance of future returns indicates that the cross-

section is actually quite consistent with the aggregate time series findings of Campbell and

Shiller (1988a,b), Cochrane (2008, 2011).

In order to calculate the infinite horizon decomposition, we estimate a VAR(1) model

defined as

xi,t+1 = Axi,t + εi,t+1, (6)
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Figure 1. Decomposition of differences in price-earnings ratios. This figure visualizes
the results of Table I for cash flow news (CFh), discount rate news (DRh), and future price-earnings ratio
news (FPEh) at different horizons h. The x-axis shows the horizon h in years. The dots show the exact
estimates from Table I based on earnings growth, negative returns, and price-earnings ratios h years ahead.
The dashed lines show the values implied by the estimated VAR model in equation (6).

where xi,t =
(
∆ẽi,t,−r̃i,t, p̃ei,t, p̃bi,t

)′
is a vector of the cross-sectionally demeaned earnings

growth, return, price-earnings ratio, and price-book ratio for each portfolio i and Σ is the

covariance matrix of the shocks.15 Appendix B provides the estimation details and the full

derivation of infinite-horizon cash flow news and discount rate news of equations (4) and (5)

in terms of A and Σ.

Figure 1 and the final row of Table I show the results of the VAR model. The model

estimates that cash flow news accounts for only 23.6% of all price-earnings ratio variation,

while discount rate news accounts for 78.7% of all variation. This is consistent with our

finding that discount rate news is more than twice as large as cash flow news at nearly

every horizon. To understand how well this model matches the directly measured cash flow

news and discount rate news, Figure 1 compares the VAR implied cash flow news, discount

rate news, and future price-earnings ratio news (shown in dashed lines) with the directly
15We include both the price-earnings ratio and the price-book ratio in the vector so that the VAR model

can speak to both the variance decomposition of the price-earnings ratio and the variance decomposition of
the price-book ratio presented in Section III.C.
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measured values from Table I (shown with dots). Despite the simplicity of the VAR model,

the model quite closely matches the dynamics of cash flow news and discount rate news at

longer horizons.

C. Reconciliation

Here, we reconcile our results with CPV and FF95. These papers study price-book ratios,

returns, and profitability and argue that the cross-section of stock prices is very different

from the aggregate time series findings of Campbell and Shiller (1988a) and Cochrane (1992).

Specifically, they find that returns only account for a minority of cross-sectional variation in

price-book ratios and that price-book ratios are strongly related to future profitability. We

first reconcile with the finding about the role of returns in price-book ratio variation and

then reconcile with the findings on profitability.

To start, we connect equation (4) to the price-book ratio by adding the earnings-book

ratio, which is simply the difference between log earnings and log book. Specifically, the

price-book ratio is

p̃bi,t ≈ ẽbi,t +
∞∑
j=1

ρj−1∆ẽi,t+j −
∞∑
j=1

ρj−1r̃i,t+j. (7)

We can then measure the relative importance of future earnings growth and future returns

from

1 ≈
Cov

(
ẽbi,t, p̃bi,t

)
V ar

(
p̃bi,t

) +

Cov

(
∞∑
j=1

ρj−1∆ẽi,t+j, p̃bi,t

)
V ar

(
p̃bi,t

) +

Cov

(
−

∞∑
j=1

ρj−1r̃i,t+j, p̃bi,t

)
V ar

(
p̃bi,t

) . (8)

The first term simply reflects correlation between the current earnings-book ratio and the

current price-book ratio. More importantly, the second and third terms represent how much

a one unit increase in the price-book ratio signals higher future earnings growth or lower

future returns and determine whether cross-sectional dispersion in price-book ratios is more

related to differences in future earnings growth or differences in future returns.
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Table II shows the results of finite horizon estimates of the decomposition in equation

(8). Similar to the results of Table I, future returns are over twice as important as future

earnings growth for accounting for cross-sectional dispersion in price-book ratios. However,

unlike in Table I, future returns only account for a minority of the total dispersion in price-

book ratios. Why does this occur? It is because, as shown by the first term in equation

(8), scaling prices by book value rather than cash flows introduces a substantial amount

of additional variation to price-book ratios which is not tied to future earnings growth or

future returns. This extra component, which reflects contemporaneous correlation between

ẽbi,t and p̃bi,t rather than prices predicting future outcomes, accounts for the majority of

dispersion in price-book ratios (51.0%).

In other words, the fact that returns only account for a minority of cross-sectional disper-

sion in price-book ratios is due to the choice to scale by book value, not by the cross-section

of prices differing substantially from the aggregate findings of Cochrane (1992). As shown

in Table I, when prices are not scaled by book, the cross-sectional findings are quite similar

to the previous aggregate findings. Even when prices are scaled by book value, we still find

that future returns play a much larger role than future earnings growth.

C.1. Connection to profitability

To fully reconcile with CPV and FF95, we analytically link the decomposition typically

used for aggregate time series, which focuses on returns and cash flow growth, and the

decomposition typically used in the cross-section, which focuses on returns and profitability.

Profitability is πt+1 ≡ log
(
1 + Et+1

Bt

)
where Bt is the book-value and Et+1 is the next-

year earnings. Using the V02 identity, CPV show that cross-sectional differences in price-

book ratios must predict cross-sectionally demeaned future profitability or cross-sectionally

demeaned future returns,

p̃bi,t ≈
∞∑
j=1

ρj−1π̃i,t+j −
∞∑
j=1

ρj−1r̃i,t+j. (9)
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Table II

Decomposition of book-market ratio differences
This table decomposes the variance of the price-book ratio using equation (8). The first column describes the horizon h at which
the decomposition is evaluated. For each period, we form five value-weighted portfolios and track their buy-and-hold earnings
growth (

∑h
j=1 ρ

j−1∆ẽt+j) and returns (
∑h

j=1 ρ
j−1r̃t+j) for every horizon up to ten years. Consistent with equation (8), we

also calculate the current earnings-book ratio. The decomposition states that variation in the current price-book ratio must
be accounted for by the covariance of the price-book ratio with (i) the current earnings-book ratio, (ii) future earnings growth,
or (iii) negative future returns. The table reports the coefficients from univariate regressions of the current earnings-book
ratio, future earnings growth and negative future returns on the current price-book ratio. All variables are cross-sectionally
demeaned. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each coefficient. The last row
shows the components of the infinite horizon decomposition and their block-bootstrap standard errors. Superscripts indicate
block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to 2020.

Years ahead ẽbt

h∑
j=1

ρj−1∆ẽt+j −
h∑

j=1

ρj−1r̃t+j

0 0.510***
s.e.(D-K) [0.035]
s.e.(boot) [0.026]

1 0.042*** 0.012
[0.014] [0.017]
[0.013] [0.013]

3 0.015 0.06*
[0.025] [0.039]
[0.026] [0.036]

5 0.024 0.104**
[0.027] [0.052]
[0.024] [0.052]

8 0.039** 0.164**
[0.023] [0.062]
[0.015] [0.063]

10 0.052*** 0.197***
[0.024] [0.061]
[0.017] [0.069]

13 0.089*** 0.238***
[0.028] [0.058]
[0.02] [0.065]

15 0.093*** 0.264***
[0.029] [0.050]
[0.019] [0.058]

∞ 0.103*** 0.423***
s.e. (boot) [0.041] [0.067]



17

From equation (9), one can decompose the variation in the price-book ratio into the covari-

ance of the price-book ratio with future profitability and the covariance of the price-book

ratio with future negative returns,

1 ≈

Cov

(
∞∑
j=1

ρj−1π̃i,t+j, p̃bi,t

)
V ar

(
p̃bi,t

) +

Cov

(
−

∞∑
j=1

ρj−1r̃i,t+j, p̃bi,t

)
V ar

(
p̃bi,t

) . (10)

The first term in equation (10) is estimated to be much larger than the second term and we

confirm in the Appendix Table AIV that our data replicates this finding.

Does this mean that the price-book ratio is informative about future cash flow growth?

To understand how this exercise relates to our findings, we compare equations (7) and (9),

which conveniently are both derived from the same Campbell-Shiller identity, use the same ρ,

the same returns, and same price-book ratio. Rearranging terms, we find a useful expression

for future profitability,
∞∑
j=1

ρj−1π̃i,t+j ≈ ẽbi,t +
∞∑
j=1

ρj−1∆ẽi,t+j. (11)

Equation (11) shows that future profitability can be split into a current component and a

future component: the current earnings-book ratio and future earnings growth. Intuitively,

a stock can have high future profitability either because it starts with high earnings relative

to book or because its earnings grow quickly. Similarly, the connection to the price-book

ratio is

Cov

(
∞∑
j=1

ρj−1π̃i,t+j, p̃bi,t

)
V ar

(
p̃bi,t

) ≈
Cov

(
ẽbi,t, p̃bi,t

)
V ar

(
p̃bi,t

) +

Cov

(
∞∑
j=1

ρj−1∆ẽi,t+j, p̃bi,t

)
V ar

(
p̃bi,t

) . (12)

From Table II, we know that the first RHS term in equation (12) is large (0.510) while the

second is small (0.093 to 0.103). Thus, the large estimated relationship between the price-

book ratio and future profitability is not driven by price-book ratios predicting earnings

growth but instead by correlation between the current price-book ratio and the current
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earnings-book ratio. Current price-book ratios are naturally correlated with current earnings-

book ratios as both variables use current book value as their denominators.

As a stylized example, consider two firms that have identical prices and identical current

and future earnings, but firm L has a low book value and firm H has a high book value.

The differences in book value could be due to differences in capital intensity. Firm L will

have a high price-book ratio and firm H will have a low price-book ratio. The firms have

identical earnings growth, so differences in price-book ratios will not predict earnings growth.

However, firm L will have high profitability because the denominator in log
(
1 +

EL,t+1

BL,t

)
is

small. This means that a regression would find that differences in price-book ratios are

strongly associated with differences in future profitability, not because price-book ratios are

informative about future cash flow growth but because price-book ratios are informative

about current profitability. Our focus on how well price-book ratios predict earnings growth

is similar in spirit to the price informativeness measure of Bai et al. (2016), who measure price

informativeness as how well price-book ratios predict future profitability after controlling for

current profitability.

IV. Extending price ratio results

In this section, we provide two extensions of our price-earnings ratio decomposition. First,

we perform a rolling estimation that shows how cash flow news and discount rates news have

changed over time. Second, we propose and estimate a novel decomposition for firm-level

earnings yields.

A. The dominance of returns over time

The previous section shows that, over the 1963-2020 sample, discount rate news plays a

much larger role than cash flow news for explaining the dispersion in price-earnings ratios.

In recent years, several papers have documented a decline in one-month or one-year return
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Figure 2. Movement over time of CF15 and DR15. This figure shows rolling estimations
of fifteen-year cash flow news (CF15) and discount rate news (DR15) from 1963-2020. At each year τ ,
CF15 shows the coefficient from a weighted regression of

{∑15
j=1 ρ

j−1∆ẽi,t+j

}τ

t=1963
on
{
p̃ei,t

}τ
t=1963

. The

regression weights are γτ−t, i.e., the weight geometrically decreases for older observations, where γ = 0.87

ensures that half of the weight is placed on the most recent five years. The value for DR15 shows the
coefficient from an analogous regression of negative fifteen-year returns on the price-earnings ratio. The
95% confidence intervals for CF15 and DR15 based on the Driscoll-Kraay standard errors are shown by the
shaded regions.

differences between value and growth stocks (i.e., the value premium) (Fama and French,

2020; Eisfeldt, Kim, and Papanikolaou, 2022). This raises the question of how much the

cross-sectional dominance of returns has changed over time. To answer this question, we

estimate a time-varying price-earnings ratio decomposition. While returns are dominant in

explaining price dispersion for all points in time, the degree of dominance (i.e., the difference

between discount rate news and cash flow news) shows significant time-variation.

To show this, we estimate the fifteen-year components of equation (3) over time using a

weighted, rolling regression. At each year, we include in the estimation all observations up to

that year and weigh older observations with a geometric decay factor γ = 0.87. This decay

rate implies a half-life of five years, which means that half of the weight in the regression is

placed on the most recent five years.

Figure 2 shows the estimated values for CF15 and DR15 over time for those portfolios
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formed between 1963 and 2005, as well as the 95% confidence intervals based on the Driscoll-

Kraay standard errors. Throughout the entire sample, the estimated DR15 is large, but

there is notable variation, with DR15 ranging from 0.31 to 0.64. For example, DR15 begins

to decline in the early 1980’s, as growth stocks during this period went on to earn relatively

high fifteen-year future returns (i.e., the dot-com bubble). However, this is followed by

the dot-com bust, in which those growth stocks experienced much lower returns than value

stocks, and we see DR15 subsequently rises. Overall, we find that DR15 is significantly larger

than CF15 in the majority of sample. Most importantly, we do not find any period in which

CF15 is larger than DR15.

B. Firm-level decomposition

The previous sections focus on decompositions for the classic value and growth portfolios. In

this section, we extend our analysis to the firm level and show that cross-sectional variation

in earnings yields continues to be dominated by future returns rather than by future earnings

growth. Given that firm-level earnings may be negative, we cannot utilize the standard log-

linearization in equation (2). To solve this issue, we propose a new decomposition for the

level of the earnings yield which separates the role of earnings growth and returns.

Let Pi,t and Ei,t be the level price and earnings for a firm. Intuitively, changes in a

firm’s earnings yield (Ei,t/Pi,t) must be due to changes either in the earnings or the price.

Specifically, we have the following identity:

Ei,t

Pi,t

= ∆
(E)
i,t+h +∆

(P )
i,t+h +

Ei,t+h

Pi,t+h

(13)

where

∆
(E)
i,t+h =

[(
Ei,t

Pi,t

− Ei,t+h

Pi,t

)
+

(
Ei,t

Pi,t+h

− Ei,t+h

Pi,t+h

)]
/2 (14)

∆
(P )
i,t+h =

[(
Ei,t

Pi,t

− Ei,t

Pi,t+h

)
+

(
Ei,t+h

Pi,t

− Ei,t+h

Pi,t+h

)]
/2. (15)

The term ∆
(E)
i,t+h measures the change in the earnings yield from changing earnings and
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holding the price fixed. Note that ∆
(E)
i,t+h measures the effect when the price is fixed at Pi,t

and when the price is fixed at Pi,t+h and then averages. This ensures that ∆
(E)
i,t+h treats the

prices Pi,t and Pi,t+h symmetrically and only distinguishes positive versus negative changes in

earnings. Similarly, the term ∆
(P )
i,t+h measures the change in the earnings yield from changing

the price and holding earnings fixed. For legibility, let θi,t ≡ Ei,t

Pi,t
. A variance decomposition

of equation (13) tells us that

1 =
Cov

(
∆̃

(E)
i,t+h, θ̃i,t

)
V ar

(
θ̃i,t

) +
Cov

(
∆̃

(P )
i,t+h, θ̃i,t

)
V ar

(
θ̃i,t

) +
Cov

(
θ̃i,t+h, θ̃i,t

)
V ar

(
θ̃i,t

) (16)

where tildes denote cross-sectionally demeaned values.

Intuitively, dispersion in earnings yields must be explained by high earnings yield firms

having a decrease in their earnings (high ∆
(E)
i,t+h), an increase in price (high ∆

(P )
i,t+h) or a high

future earnings yield. This closely mirrors equation (3), where a high earnings yield (−pei,t)

must be explained by low earnings growth, high returns, or a high future earnings yield.

Similar to equation (3), we treat the first RHS term in (16) as a measure of cash flow news

as it captures the effect of earnings growth, and we treat the second RHS term as discount

rate news as it captures the effect of price growth. Note that price growth and returns for

our sample are virtually identical, with a correlation of 0.998 at the one-year horizon and

a correlation of 0.981 at the fifteen-year horizon. Finally, the third term captures the role

of the future earnings yield, which reflects earnings movements and price movements more

than h periods in the future.

One potential concern in the estimation of equation (16) is that some firms exit the

sample. In other words, for some θ̃i,t, we may not observe ∆̃
(E)
i,t+h, ∆̃

(P )
i,t+h, θ̃i,t+h.16 Given that

our goal is to show that ∆̃(P )
i,t+h accounts for more dispersion in earnings yields than ∆̃

(E)
i,t+h, we

consider a worst-case scenario in which we attribute all of the missing variation to cash flow

news. Specifically, if ∆̃(E)
i,t+h, ∆̃

(P )
i,t+h, θ̃i,t+h are not observable, then we assume ∆̃

(E)
i,t+h = θ̃i,t

16Fortunately, on average, more than 90% of the market value remains listed after five years, more than
80% remains after ten years, and more than 70% remains after fifteen years, so we can directly observe the
vast majority of ∆̃(E)

i,t+h, ∆̃(P )
i,t+h,θ̃i,t+h.
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Table III

Decomposition of firm-level differences in earnings yields
This table decomposes the variance of earnings yields using equation (16). The first column describes the horizon h at which
the decomposition is evaluated. The components CFh, DRh, and FPEh are the coefficients from univariate regressions of
firm-level earnings growth ∆

(E)
i,t+h, price growth ∆

(P )
i,t+h, and future earnings yields on current earnings yields. All variables

are cross-sectionally demeaned. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each
coefficient. Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period
is 1963 to 2020.

Years ahead CFh DRh FPEh

1 0.206*** 0.075*** 0.715***
s.e.(D-K) [0.043] [0.028] [0.034]
s.e.(boot) [0.055] [0.024] [0.037]

3 0.269*** 0.216*** 0.509***
[0.073] [0.055] [0.048]
[0.085] [0.044] [0.047]

5 0.23** 0.331*** 0.438***
[0.105] [0.08] [0.064]
[0.106] [0.059] [0.053]

8 0.208* 0.435*** 0.356***
[0.098] [0.084] [0.065]
[0.108] [0.077] [0.042]

10 0.145 0.528*** 0.326***
[0.113] [0.099] [0.066]
[0.120] [0.096] [0.034]

13 0.14 0.612*** 0.242***
[0.114] [0.093] [0.055]
[0.121] [0.102] [0.026]

15 0.098 0.687*** 0.209***
[0.122] [0.103] [0.044]
[0.127] [0.113] [0.020]
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and ∆̃
(P )
i,t+h, θ̃i,t+h = 0. In other words, we assume that any deviation from the cross-sectional

mean in the current earnings yield (θ̃i,t) is entirely explained by changes in future earnings

(∆̃(E)
i,t+h). This pushes the first coefficient in equation (16) towards 1 and pushes the second

and third coefficients towards 0, meaning that our estimates are an upper bound on cash

flow news and a lower bound on discount rate news.

Table III shows the results of the firm-level decomposition. We use weighted regressions

based on market size to assign more importance to larger firms. In line with the findings

of Table I, we find that differences in earnings yields are primarily explained by discount

rate news, rather than cash flow news. At the fifteen-year horizon, changes in prices explain

68.7% of earnings yield variation while changes in earnings explain 9.8%.

Comparing Tables I and III, we see that the values for discount rate news are quite

similar for both decompositions. In both tables, cash flow news is relatively small, at most

26.8%. Interestingly, we find that cash flow news gradually increases with longer horizons

in the decomposition of Table I, but gradually decreases with longer horizons in Table III.

This means that high earnings yield stocks have slightly lower long horizon earnings growth

(Table I) but have slightly higher long horizon earnings changes (Ei,t+h − Ei,t). Intuitively,

for high earnings yield stocks, even a small amount of earnings growth can create a large

level difference Ei,t+h − Ei,t, as these stocks already start with high earnings.

V. Evaluating Asset Pricing Models

How do our empirical results compare to asset pricing models? As shown in Table I, we find

that cross-sectional differences in price-earnings ratios are largely explained by differences

in future returns rather than differences in future earnings growth. This means that the

cross-section of price-earnings ratios must be largely explained by risk premia or mispricing.

To test how well existing models can match our findings, we simulate six cross-sectional

asset pricing models: four in which prices are affected by heterogeneous exposure to priced
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risks and two in which prices are affected by mispricing due to behavioral biases or learn-

ing. The four risk premia models are the growth options model of Berk, Green, and Naik

(1999), the costly reversibility of capital model of Zhang (2005), the duration risk model

of Lettau and Wachter (2007), and the investment-specific technology risk model of Kogan

and Papanikolaou (2014). The two mispricing models are the Bayesian learning model of

Lewellen and Shanken (2002) and the behavioral model of Alti and Tetlock (2014), which

incorporates both extrapolation and overconfidence. Appendix C contains the details of the

simulations, including how we sort firms into portfolios.

A. Broad results

Table IV shows the decomposition results for each model. Before discussing the details of

each model, we first highlight some broad takeaways. First, many models imply that virtually

all dispersion in price-earnings ratios is due to differences in future earnings growth. The first

three risk premia models and the last mispricing model of Table IV imply that full-horizon

discount rate news DR∞ is close to 0, ranging from −0.04 to 0.07, while full-horizon cash

flow news CF∞ is close to 1. Even though these models are able to match the one-month or

one-year value anomaly, they do not generate large differences in longer horizon returns and

the overall difference in returns is small compared to the dispersion in price-earnings ratios.

In other words, simply matching the value anomaly is not sufficient to explain our decom-

position results. This highlights the difference between explaining short-term fluctuations in

prices and explaining the level of prices. Even if we focus on the finite-horizon decomposi-

tions, these four models all imply that we should observe only small differences in 15-year

returns (DR15 ≤ 0.07) and very large differences in 15-year earnings growth (CF15 ≥ 0.93),

both of which are clearly rejected in the data.

Second, the models which generate a non-trivial DR∞ feature long-lived differences in risk

exposure or mispricing. The fourth and fifth models of Table IV imply full-horizon discount

rate news of 0.28 and 0.93, respectively. A portion of this comes from one-year returns,
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as shown by DR1, but the majority of the discount rate news comes from longer horizon

returns beyond one-year. For the risk premia model of Kogan and Papanikolaou (2014), this

comes from long-lived differences in each firm’s exposure to aggregate shocks. In the learning

model of Lewellen and Shanken (2002), this comes from the fact that agents are solving a

difficult learning problem and mispricing is only gradually resolved over time. In contrast

to the models studied in Keloharju et al. (2021), this demonstrates that there are models

in which firms have long-lived differences in average future returns and that incorporating

these long-lived differences is important for realistically matching cross-sectional dispersion

in price ratios.

B. Risk premia models

Below we discuss the key source of risk in each model and provide intuition for the decom-

position results.

B.1. Growth options

In the model of Berk, Green, and Naik (1999), each firm has some existing projects which

generate cash flows. Each period, the firm draws a new potential project, which it can pay

a fixed cost to undertake. The value of the firm comes from its existing projects as well as

the option to undertake future projects (“growth options”). As the term “growth options”

implies, future earnings growth plays a key role in this model. The ratio of the firm’s price to

its current earnings reflects how much of the firm’s value comes from existing projects versus

growth options. Firms with high price-earnings ratios derive most of their value from their

expected future projects rather than existing projects, and future earnings growth accounts

for most dispersion in price-earnings ratios (CF15 = 0.95).

The key risk in the model is shocks to the risk-free rate. Compared to existing projects,

the value of growth options is less sensitive to changes in the risk-free rate, as the firm can

endogenously change its decision to exercise the option (i.e., it only undertakes the potential
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Table IV

Variance Decomposition in Different Asset Pricing Models
This table calculates the variance decomposition for the price-earnings ratio from equation (3) in different asset pricing models
and reports the implied one-year, fifteen-year year and full horizon discount rate news (DR1, DR15, DR∞) and cash flow news
(CF1, CF15, CF∞). The first row shows the values measured in the data. The second, third, fourth, and fifth rows show the
results for models of risk premia. These four models are the model of growth options in Berk, Green, and Naik (1999), the
model of costly reversibility of capital in Zhang (2005), the model of duration risk in Lettau and Wachter (2007), and the model
of IST risk of Kogan and Papanikolaou (2014). The sixth and seventh rows show the results for the model of learning about
mean cash flow growth in Lewellen and Shanken (2002) and the model of extrapolation and overconfidence of Alti and Tetlock
(2014). All models are solved and estimated using the original author calibrations and simulated over a 50-year sample.

DR1 DR15 DR∞ CF1 CF15 CF∞

Data 0.04 0.52 0.79 0.10 0.20 0.24
[0.03] [0.07] [0.08] [0.02] [0.04] [0.08]

Growth Options 0.01 0.03 0.03 0.28 0.95 0.95
[0.06] [0.18] [0.18] [0.06] [0.17] [0.17]

Costly Reversibility -0.02 -0.03 -0.03 -0.31 1.06 1.06
of Capital [0.01] [0.03] [0.03] [0.09] [0.04] [0.04]

Risk Premia

Duration Risk 0.01 0.02 -0.04 0.03 1.35 1.04
[0.01] [0.03] [0.03] [0.01] [0.05] [0.03]

Investment-specific 0.05 0.27 0.28 0.01 0.68 0.72
technology risk [0.03] [0.11] [0.12] [0.01] [0.10] [0.10]

Learning 0.11 0.83 0.93 0.01 0.05 0.06
[0.01] [0.04] [0.04] [0.01] [0.03] [0.04]

Mispricing
Extrapolation and 0.01 0.07 0.07 0.15 0.93 0.93

overconfidence [0.01] [0.03] [0.03] [0.02] [0.02] [0.02]
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project if the risk-free rate is low). Because of this, the agent requires a lower risk premium

for firms whose value largely comes from growth options rather than existing projects, which

are firms with high price-earnings ratios. Quantitatively, the difference in risk premia is only

a small part of the dispersion in price-earnings ratios (DR15 = 0.03).

Importantly, these differences in risk exposure are fairly short-lived. A firm can only be

a “growth” firm (i.e., high price-earnings ratio) for a short amount of time. As soon as it

begins to add new projects, its exposure to changes in the risk-free rate increases and the

unusually low risk premium for the firm disappears.

B.2. Costly reversibility of capital

In the model of Zhang (2005), firms produce goods using capital and face adjustment costs

for changing their capital. Each period, firms observe aggregate productivity as well their

idiosyncratic productivity and then choose their optimal future capital subject to adjust-

ment costs. Differences across firms are due to differences in their sequence of idiosyncratic

productivity. Because idiosyncratic productivity is AR(1), future earnings growth is partly

predictable and dispersion in price-earnings ratios largely predicts differences in future earn-

ings growth (CF15 = 1.06).

The single priced risk in this model is shocks to aggregate productivity, which appear

directly in the stochastic discount factor. Because of the adjustment costs to capital, firms

with large amounts of capital are more exposed to negative aggregate shocks. Therefore,

the agent requires a higher risk premium for firms with high capital relative to total firm

value. Quantitatively, these differences in risk premia are small relative to the dispersion in

price-earnings ratios (DR10 = −0.03).17

Like Berk, Green, and Naik (1999), differences in risk exposure are short-lived due to
17In the model, high price-earnings ratio firms have low price-capital ratios. A 1% increase in idiosyncratic

productivity does not change the current capital, increases the current earnings by 1%, and increases the
current price by less than 1% since the increase in productivity is persistent but not permanent. Thus, an
increase in idiosyncratic productivity raises the price-capital ratio and lowers the price-earnings ratio. This
is why discount rate news is slightly negative, as the model predicts that high price-capital ratio firms will
have lower future returns, which means that high price-earnings ratio firms will have higher future returns.
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the optimal behavior of firms. A firm with a high price relative to its capital will optimally

choose to increase capital. As this firm increases its capital, it increases its exposure to the

aggregate shock and loses its low risk premium.

B.3. Duration risk

In the model of Lettau and Wachter (2007), each firm receives some share si,t of the aggregate

earnings. The value of si,t goes through a fixed cycle, increasing from s to a peak value of s̄

and then decreasing back to s. The cross-section of firms is populated with firms at different

points in this share cycle.

The key priced risk is the shock to aggregate earnings. These aggregate earnings shocks

are partly reversed over time, which means that long horizon earnings are less exposed to

these aggregate shocks than short-horizon earnings. Because of this, firms with high price-

earnings ratios (i.e., firms with a low current share si,t) initially have lower risk premia

(DR1 = 0.01). However, the overall contribution of discount rates to the price-earnings

ratio is relatively small (DR15 = 0.02) as the firms that initially have low shares eventually

become the firms with high shares and the relationship reverses.

The quantitatively larger component is that high price-earnings ratio firms experience

higher earnings growth as their share increases. In fact, after 15 years, the firms with low

initial shares have not only increased their shares back to a neutral value but have actually

become the firms with high share values. Because of this, 15-year cash flow growth accounts

for more than 100% of the initial dispersion in price-earnings ratios (CF15 = 1.34) as all

firms have essentially reversed their place in the cycle.

B.4. Investment-specific technology risk

In the IST model of Kogan and Papanikolaou (2014), firms have existing projects which

generate cash flows. New projects exogenously arrive to each firm and the firm chooses

the optimal amount to invest in each project. Importantly, there are long-lived differences
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between firms in the arrival rate of new projects. The arrival rate for each firm depends on

a permanent firm-specific parameter as well as a slow-moving idiosyncratic Markov process.

The key shock in the model is an aggregate shock to the cost of capital for new projects,

which directly impacts the stochastic discount factor. A decrease in this cost does not change

the value of existing projects but does increase the value of growth options (i.e., the value of

the option to undertake new projects). Given that a decrease in this cost raises the stochastic

discount factor, the agent requires a lower risk premium for firms whose value mainly comes

from growth options rather than existing projects. Because of this, firms with high prices

relative to current earnings have lower discount rates than their peers (DR15 = 0.27) and

higher future earnings growth (CF15 = 0.68).

An important element that distinguishes this model from Berk, Green, and Naik (1999)

and Zhang (2005) is that the differences in risk premia persist even after firms make their

capital choices and invest in new projects. Firms differ in the arrival rate of new projects and

this does not change when a firm invests in new projects. This helps to generate persistent

differences in exposure to the aggregate shock.

C. Mispricing models

Below we discuss the key source of mispricing in each model and the main intuition.

C.1. Lewellen and Shanken 2002

We focus on their quantitative model with renewing parameter uncertainty. Each firm’s

earnings growth is normally distributed with an unknown firm-specific mean. Bayesian

investors learn each firm’s mean from past earnings growth. To ensure investors never

completely learn the true parameters, the mean for each firm is redrawn every K years.18

The agent prices the firm based on her best guess of mean earnings growth and a constant

discount rate. Because realized earnings growth is quite noisy, investors’ guesses for each
18To emphasize that cash flow news remains small even when agents have a non-trivial amount of time to

observe the noisy process, we use K = 38, as this is the maximum value considered in the paper.
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firm’s mean earnings growth are often inaccurate and the connection between the price-

earnings ratio and future earnings growth is small (CF15 = 0.05). Ex post, price-earnings

ratios largely comove with future returns (DR15 = 0.83).

Importantly, agents’ beliefs about mean earnings growth adjust slowly over time. Because

of this, mispricing is slowly resolved. While this model does have a higher DR1 than the

other models, it is still the case that most discount rate news comes from longer horizon

returns, DR1 = 0.11 compared to DR15 = 0.83.

C.2. Alti and Tetlock 2014

In this model, firms’ cash flows depend on their capital as well as their idiosyncratic pro-

ductivity. Each firm’s idiosyncratic productivity is equal to an unobservable latent AR(1)

process plus noise. The agent infers the latent component of productivity from an imperfect

exogenous signal and observed cash flows. The agent’s beliefs are impact by two biases: (i)

she overextrapolates, meaning that she believes the latent process has a higher persistence

than it actually does and (ii) she is overconfident, meaning that she believes the exogenous

signal is more precise than it actually is.

Given these biases, the agent prices each firm based on its capital, which is observable, and

her inferred guess for the latent component of idiosyncratic productivity. These biases lead to

mispricing, which accounts for some of the cross-sectional dispersion in price-earnings ratios

(DR15 = 0.07). However, the majority of dispersion in price-earnings ratios is explained by

future earnings growth (CF15 = 0.93).

What explains the differences in discount rate news between the two mispricing models?

The key element is that the agent in Alti and Tetlock (2014) has much more information

about the firm. In Lewellen and Shanken (2002), the agent sets the price-earnings ratio for

each firm based entirely on her guess for the underlying mean growth parameter, and this

guess is based solely on realized cash flows. In Alti and Tetlock (2014), the agent sets the

price-earnings ratio for each firm based her guess for latent idiosyncratic productivity as
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well as the firm’s capital. Because capital is observable, mistakes about latent productivity

only comprise a portion of price-earnings ratio dispersion. Additionally, the agent knows

the exogenous signal as well as the realized cash flows when forming her guess for latent

productivity.

VI. Return predictability and return surprises

Tables I and II show the quantitative importance of differences in future returns for explaining

price ratio dispersion through the decompositions (4) and (7). The other side of the coin

for these decompositions is that if we are interested in understanding return predictability,

then dispersion in prices ratios should be crucial. This section carries out three exercises to

illustrate how our findings relate to return predictability and return surprises.

First, given the distinction between the price-earnings ratio decomposition and the price-

book ratio decomposition, we focus on long-term cumulative returns and test whether price-

earnings ratios or price-book ratios are a stronger predictor. While both variables sig-

nificantly predict long-term cumulative returns in separate regressions, we show that the

price-earnings ratio completely drives out the price-book ratio in joint regressions. Second,

motivated by the recent findings of Keloharju, Linnainmaa, and Nyberg (2021), we eval-

uate the predictability of non-cumulative return differences at long horizons. As long as

price-earnings ratios are mean-reverting, we demonstrate that the lack of earnings growth

predictability provides substantial evidence of return predictability. Third, given our find-

ings on the level of price-earnings ratios, we measure the importance of revisions in expected

future returns and expected future earnings growth for explaining price-earnings ratio inno-

vations and return surprises, similar to V02. Consistent with the previous sections, we find

a larger role for information about future returns than information about future earnings

growth.
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A. Long-term cumulative returns

Equations (4) and (7) show that all dispersion in price-earnings ratios that is not related

to future earnings growth must be related to future returns, whereas this is not true for

dispersion in price-book ratios. This naturally raises the question whether the price-earnings

ratio is a better predictor of returns than the price-book ratio. For cumulative returns,

we first show that the price-earnings ratio predicts future returns with larger magnitude

coefficients and higher R2’s than the price-book ratio. Next, we show that the price-earnings

ratio drives out the price-book ratio when returns are regressed on both variables. Finally, we

connect our results to the profitability anomaly by looking at the ability of the earnings-book

ratio to predict returns.

Table V shows the results for the price-earnings ratio and the price-book ratio. Panel A

shows separate univariate regressions of future returns on the price-earnings ratio and the

price-book ratio. At every horizon, we see find that the price-earnings ratio predicts future

returns with a larger magnitude coefficient and a higher R2 than the price-book ratio. As

shown in the final column of Panel A, nearly half (47.6%) of all variation in ten-year returns

is explained by the price-earnings ratio.

Importantly, Panel B shows the results when future returns are regressed on both price

ratios together. At every horizon, the price-earnings ratio almost completely drives out

the price-book ratio. The coefficients for the price-book ratio in Panel B are all small

and insignificant. In comparison, the coefficients for the price-earnings ratio are large and

significant, particularly for longer horizons. Further, the R2’s and regression coefficients for

the price-earnings ratio in Panel B are all almost identical to the values in the univariate

regression of returns on the price-earnings ratio in Panel A. Rephrased, including the price-

book ratio in the regression has almost no impact on the ability of the price-earnings ratio

to explain future returns and provides almost no increase in the R2. At the ten-year horizon,

including the price-book ratio in the regression only marginally improves the R2 from 47.56%

to 47.58%, even reducing its adjusted R2.
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The results of Panel B are consistent with the price-earnings ratio being a less noisy

predictor of future returns than the price-book ratio. This can naturally lead to a profitability

anomaly if the price-book ratio, rather than the price-earnings ratio, is being used to predict

returns. Cohen, Polk, and Vuolteenaho (2003) and Fama and French (2006) show that

current profitability, i.e., a measure of current earnings relative to book value, is an additional

factor on top of the Fama and French (1993) three factors that positively predicts future

returns. The price-book ratio equals the price-earnings ratio plus the earnings-book ratio.

Because the price-book ratio is a noisier predictor of future returns than the price-earnings

ratio, including the difference between the two ratios as a separate regressor will improve the

R2. In other words, if the price-book ratio is being used as a factor, then the earnings-book

ratio will be an additional factor that helps to predict returns. To demonstrate this, Panel

C shows that when returns are regressed on both the price-book ratio and the earnings-book

ratio, the earnings-book ratio positively and significantly predicts future returns. Comparing

the R2’s of Panel A and Panel C, we see that including the earnings-book ratio improves the

R2’s relative to only using the price-book ratio and that the R2’s of Panel C are similar to

the R2’s of the univariate regressions in Panel A using the price-earnings ratio.

B. Non-cumulative returns

The results of Section III imply that high price ratio stocks have significantly lower cumu-

lative returns than low price ratio stocks even at long horizons. However, recent findings

of Keloharju, Linnainmaa, and Nyberg (2021) show that non-cumulative return differences

across stocks are insignificant after only a few years. These two findings are not inconsistent

with each other. Our decomposition results show that differences in price ratios are reflected

in future returns at some point before horizon h, even if we can’t tell at which exact horizon

those returns are reflected.

Further, our decomposition can still illustrate some useful implications for non-cumulative



35

return predictability. Consider a three-equation regression framework,

−r̃i,t+h = βr
hp̃ei,t + εri,t+h (17)

∆ẽi,t+h = βe
hp̃ei,t + εei,t+h (18)

p̃ei,t+h−1 − ρp̃ei,t+h = ϕh−1 (1− ρϕ) p̃ei,t + εpei,t+h. (19)

Note that constants have been dropped from the regressions as all variables are cross-

sectionally demeaned. The coefficients βr
h and βe

h capture how much an increase in the

current price-earnings ratio is associated with lower year-h returns and higher year-h earn-

ings growth. The coefficient ϕ is simply the persistence of the price-earnings ratio.

Table VI shows the results of regressions (17)-(19) for horizons of two to ten years.19

The second rows of Panels A and B show the significance of the null hypotheses βr
h = 0 and

βe
h = 0, respectively. We first note that the return coefficient is significant at the 5% level

for horizons of two and three years but it is generally not significant at horizons beyond four

years. In comparison, the earnings growth coefficient is insignificant at all horizons. For

Panel C, we report the persistence ϕ implied at each horizon from the regression (19). The

second row of Panel C shows the significance of the null hypothesis ϕ > 1/ρ, which we can

reject at nearly all horizons.

Because of the identity (1), so long as we assume that price-earnings ratios are mean-

reverting, then we can construct more powerful tests for return predictability. Similar to

Lewellen (2004) and Cochrane (2008), we show two methods for doing this. First, we ex-

ploit the positive correlation between εri,t+h and εpei,t+h. Observations in which the price-

earnings ratio quickly mean-reverts tend to also be observations in which price-earnings ra-

tios strongly predict future returns and, conversely, observations with relatively little mean-

reversion tend to be observations in which return predictability is weaker. Thus, while the

p-value for βr
h may be insignificant for longer horizons, the third row of Panel A shows that

βr
h/
[
ϕh−1 (1− ρϕ)

]
is significant at much longer horizons. Rephrased, we can confidently

19Note that the one-year results for βr
1 , β

e
1 , ϕ are simply DR1, CF1, and FPE1/ρ from Table I.
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say that βr
h is positive so long as ϕ < 1/ρ (i.e., price-earnings ratios do not explode).

Second, by placing plausible bounds on the persistence of the price-earnings ratio, we

can show that the lack of earnings growth predictability provides evidence against the null

hypothesis that returns are unpredictable. The return identity (1) implies that at every

horizon h, we have

βr
h + βe

h ≈ ϕh−1 (1− ρϕ) . (20)

Intuitively, this condition says that all mean-reversion in the price-earnings ratio must be

due to a high price-earnings ratio predicting higher earnings growth (βe
h) or lower returns

(βr
h). Since Table VI shows that we can reject ϕ > 1/ρ at almost all horizons, we can

conclude that the sum βr
h + βe

h is significant even though βr
h and βe

h may not be individually

significant at horizons beyond three years (i.e., they cannot both be zero). Under the null

hypothesis that βr
h = 0, all mean-reversion must be due to the price-earnings ratio predicting

earnings growth (βe
h ≈ ϕh−1 (1− ρϕ)). We test this null hypothesis using a persistence for

the price-earnings ratio taken from the data as well as an upper bound on the persistence of

nearly 1 (0.999).20

Specifically, we utilize a wild bootstrap procedure to simulate earnings growth, returns

and prices under the null conditions that βr
h = 0 and price-earnings ratios have persistence

ϕ. The wild bootstrap procedure not only allows each simulation to preserve general forms

of conditional heteroskedasticity in equations (17)-(19), but it also captures any contem-

poraneous correlation structure between price-earnings ratios, lagged returns, and lagged

earnings growth. For our main simulation, we set ϕ = 0.953 based on the average value of

ϕ across all horizons after adjusting for Stambaugh (1999) small-sample bias. We run 1,000

simulations and, for each one of them, we estimate the parameters βr
h, β

e
h and their respective

t-statistics.21

20To account for any approximation error in equation (20), we repeat our exercise using observed returns,
observed price-earnings ratios, and the earnings growth implied by the identity (1). This ensures that
equation (20) holds exactly. We find that the results are almost identical to our results using the observed
earnings growth.

21Appendix D contains a detailed description of this procedure.
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Figure 3 shows for each of the ten horizons how the simulated t-statistics under the null

hypothesis compare to the observed t-statistics. The red line shows the probability that one

would spuriously estimate a t-statistic for returns with a magnitude greater than or equal to

the t-statistic we observe for βr
h in the data. Consistent with the p-values in Table VI, the

probability is small, but larger than 5% after the first three years. On the other hand, the

blue line shows the probability that one would estimate a t-statistic with a magnitude less

than or equal to the observed t-statistic of βe
h in Table VI. For all horizons after the first

year, that probability is less than 1%. While the red line by itself does not reject the null

hypothesis, the blue line is strong evidence for rejecting it at all horizons h ≥ 2. Rephrased,

the lack of clear earnings growth predictability is strong evidence against the null hypothesis.

Intuitively, if price-earnings ratios mean-revert and returns are unpredictable, then we should

observe highly predictable earnings growth. Appendix D shows that these results continue to

hold for the entire range of values estimated through equation (19), which spans the interval

ϕ = (0.888, 0.993) after adjusting for Stambaugh (1999) small-sample bias, as well as an

upper bound of 0.999.22

C. Innovations and return surprises

While the main focus on our paper is on the level of price ratios, we can extend our results to

changes in price ratios and current returns. This is similar to the analysis of V02. Consistent

with the previous sections, we find a larger role for information about future returns than

information about future earnings growth.

Applying conditional expectations to equation (4) and taking the difference from t − 1

to t, we see that innovations to the price-earnings ratio must represent revisions in expected

future earnings growth or revisions in expected future returns. Specifically,

p̃et − Et−1 [p̃et] ≈ Revet −Revrt (21)
22The lower bound of 0.888 comes from the persistence at the one-year horizon of FPE1/ρ.
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Figure 3. Testing the predictability of non-cumulative returns. This figure visualizes
the probabilities of observing the results of Table VI under the absence of return predictability. For 1,000
wild bootstrap simulations, the red line shows for every horizon the share of simulated βr

h t-statistics greater
than the observed t-statistic in the data. The blue line shows for every horizon the share of simulated βe

h

t-statistics smaller than the observed t-statistic in the data.

where

Revet = (Et − Et−1)
∞∑
j=1

ρj−1∆ẽt+j (22)

Revrt = (Et − Et−1)
∞∑
j=1

ρj−1r̃t+j. (23)

We can decompose the cross-sectional dispersion in innovations to the price-ratio into:

V ar (p̃et − Et−1 [p̃et]) ≈ V ar (Revet ) + V ar (Revrt )− 2Cov (Revet , Revrt ) . (24)

Table VII shows the results of the decomposition using the VAR model of Section III.B.

First, we see that the dispersion in future return revisions is almost twice as large as the

dispersion in future earnings growth revisions (0.15 compared to 0.08). This is similar to the

results of Section III, in which future returns accounted for more than twice as much of the

dispersion in the level of the price-earnings ratio as future earnings growth.

Our decomposition of price-earnings ratio innovations is closely related to the literature

on return surprises. For example, V02 finds that return surprises are largely driven by shocks
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Table VII

Decomposition of price-earnings ratio and return surprises
This table estimates the surprise decompositions in equations (24) and (26). Using the VAR model of Section III, the return re-
visions and earnings growth revisions are defined as Revrt = (Et − Et−1)

∑∞
j=1 ρ

j r̃t+j and Revet = (Et − Et−1)
∑∞

j=1 ρ
j∆ẽt+j .

The earnings growth surprise is defined as Surpet = ∆ẽt − Et−1 [∆ẽt]. All numbers are scaled by 100. Appendix B gives the
full equations for measuring the revisions and surprises from the estimated VAR model.

Panel A: Price-earnings surprise decomposition

V ar (p̃et − Et−1 [p̃et]) V ar (Revet ) V ar (Revrt ) −2Cov (Revet , Revrt )

0.44 0.08 0.15 0.21

Panel B. Return surprise decomposition

V ar (r̃t − Et−1 [r̃t]) V ar (Surpet + ρRevet ) ρ2V ar (Revrt ) −2Cov (Surpet + ρRevet , ρRevrt )

0.57 0.36 0.14 0.06

to cash flows. To understand the difference in these results, we use equation (1), which shows

that return surprises simply add an additional term relative to equation (21) which is the

current earnings growth surprise,

r̃t − Et−1 [r̃t] ≈ (∆ẽt − Et−1 [∆ẽt]) + ρRevet − ρRevrt . (25)

Table VII Panel B shows the results of the return surprise decomposition,

V ar (r̃t − Et−1 [r̃t]) ≈ V ar (∆ẽt − Et−1 [∆ẽt] + ρRevet ) + ρ2V ar (Revrt ) (26)

− 2Cov (∆ẽt − Et−1 [∆ẽt] + ρRevet , ρRevrt ) .

Consistent with V02, we find that the dispersion of ∆ẽt−Et−1 [∆ẽt]+ρRevet is quite large and

is more than double the dispersion in future return revisions. However, this does not indicate

that revisions in future earnings growth play a large role in return surprises. From Panel A,

we already know that the dispersion of future earnings growth revisions is relatively small,

which means that the large dispersion for ∆ẽt−Et−1 [∆ẽt]+ρRevet comes from the inclusion

of the current earnings growth surprise. Intuitively, if earnings growth is volatile and difficult
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to predict, then current earnings growth surprises will be volatile while revisions for future

earnings growth will be small. Thus, we find that return surprises are mainly explained

by the current earnings growth surprise and future return revisions, while future earnings

growth revisions play only a minor role. This is similar to the results of Section III.B, which

show that variation in price-book ratios is explained by a current cash flow variable (the

earnings-book ratio) and future returns, while future earnings growth plays only a small

role.

VII. Conclusion

A key question in understanding the cross-section of stock prices is whether price ratios

are more related to future cash flow growth or future returns. This determines if stocks

should be modeled as being primarily heterogeneous in their future growth or if differences

in risk exposure and/or mispricing are the primary factors driving price differences. Our

results support the latter interpretation. We find that both price-earnings ratios and price-

book ratios primarily predict future returns rather than future earnings growth. Using

variance decompositions, we estimate that cross-sectional differences in future returns are

over twice as important as cross-sectional differences in future earnings growth for explaining

the cross-section of price-earnings ratios and price-book ratios.

Alternative decompositions focusing on return surprises and innovations to price ratios,

rather than the level of price ratios, similarly show that future returns play a larger role than

future earnings growth. These results imply large amounts of long-term return predictability,

particularly for the price-earnings ratio, and we document that price-earnings ratios explain

nearly half of all dispersion in future ten-year returns. While the price-book ratio is well-

established as the standard price ratio for predicting monthly returns, we find that the

price-earnings ratio completely drives out the price-book ratio for predicting returns at longer

horizons of 1-10 years.
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Our results indicate that the cross-section of stock price ratios is broadly consistent with

the time-series of aggregate price ratios, in the sense that both the cross-section and the

aggregate time-series are primarily related to future returns rather than future cash flow

growth. This raises the prospect that a single mechanism may be driving both the cross-

sectional and aggregate variation in price ratios. Given the importance of this conclusion, we

reconcile our findings with previous work which argues that the cross-section is distinct from

aggregate time-series variation due to a strong relationship between price-book ratios and

future profitability. Using accounting identities, we demonstrate that future profitability

can be split into the current earnings-book ratio and future earnings growth. We then

document that the relationship between price-book ratios and future profitability is driven

by correlation between price-book ratios and current earnings-book ratios rather than price-

book ratios being informative about future cash flow growth.
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Appendix

A. Connecting returns, earnings growth, and price-earnings ratios

First, we discuss the case where dividends are zero. In this case, the return is simply equal

to the price growth which means we have an exact relationship

rt+1 = ∆et+1 − pet + pet+1. (A1)

In other words, by focusing on earnings growth rather than dividend growth, we ensure that

our relationships hold even for firms that do not pay dividends. A high price-earnings ratio

pet must be followed by low future returns rt+1, high future earnings growth ∆et+1, or a high

future price-earnings ratio pet+1.

Now, we consider the case where dividends are non-zero. For all of the portfolios studied

in this paper, portfolio-level dividends are always positive. This makes the non-zero dividend

case the relevant scenario for our analysis. We start with the one-year return identity

Rt+1 =
Pt+1 +Dt+1

Pt

=

(
Pt+1

Dt+1
+ 1
)

Dt+1

Dt

Pt

Dt

,

where Pt and Dt represent the current price and dividends. Log-linearizing around the point

p̄d, we can state the price-dividend ratio pdt in terms of future dividend growth, ∆dt+1,

future returns, rt+1, and the future price-dividend ratio, pdt+1, all in logs:

rt+1 ≈ κd +∆dt+1 − pdt + ρpdt+1, (A2)

where κd is a constant, ρ = ep̄d/
(
1 + ep̄d

)
< 1. Using the log payout ratio det, we then

insert the identity pet = pdt + det into (A2) to obtain

rt+1 ≈ κ+∆et+1 − pet + ρpet+1 (A3)

where we approximate (1− ρ) det+1 as 0 given that 1− ρ is close to 0.23 Note that p̄d does

not need to be the mean price-dividend ratio of this specific stock or portfolio, so we can
23The zero dividend relationship in equation (A1) is simply a special case of equation (A3) as p̄d goes to

infinity.
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study cross-sectional variation without using portfolio-specific approximation parameters.

Following Cochrane (2011), we use the average price-dividend ratio of the market for p̄d.

While it is true that this is only an approximation, empirically this approximation (A3)

holds quite tightly. For all horizons of 1 to 15 years, Table I shows that a one unit increase in

pet is associated with almost exactly a one unit increase in
∑h

j=1 ρ
j−1∆et+j−

∑h
j=1 ρ

j−1rt+j+

ρhpet+h. Further, the final column of Table I shows the portion of price-earnings ratio

dispersion that is accounted for by the approximation error. We find that the approximation

error from ignoring the payout ratio and using a single value for ρ accounts for only 1.3% of

all price-earnings ratio dispersion for horizons of 1 to 15 years.

B. VAR model

The key elements of the VAR model are the matrices A and Σ, where

xt+1 = Axt + εt+1, (A4)

xt =
(
∆ẽt,−r̃t, p̃et, p̃bt

)′
, and Σ is the covariance matrix of shocks. Using the estimated

model, shown in Table AI, we can derive the variance decomposition in equation (3).

Let e1, e2, e3, e4 be defined such that ej is a vector where the jth element is 1 and all other

elements are 0. Additionally, let the matrix W be

W = A (I − ρA)−1 . (A5)

The matrices A and Σ determine the covariance matrix Γ of xt. Specifically, we have

vec (Γ) = (I − A⊗ A)−1 vec (Σ) (A6)

where ⊗ is the Kronecker product. Given this covariance matrix, cash flow news and discount

rate news at finite horizons are

CFh =
e′1
[
A
(
I − ρhAh

)
(I − ρA)−1]Γe3

e′3Γe3
(A7)

DRh =
e′2
[
A
(
I − ρhAh

)
(I − ρA)−1]Γe3

e′3Γe3
(A8)
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Table AI

Estimated transition matrix
This table shows the estimated transition matrix and shock covariance matrix. The VAR model xt+1 = Axt + εt+1 where

xt =
(
∆ẽt,−r̃t, ˜pet, p̃bt

)′
is estimated to evaluate the infinite-horizon decomposition in equation (5).

Panel A: Transition matrix A

∆et −rt pet pbt

∆et+1 −0.033 −0.131 0.058 −0.020
−rt+1 0.073 0.081 0.071 −0.008
pet+1 −0.035 0.057 0.869 0.044
pbt+1 −0.092 0.059 −0.043 0.966

Panel B. Error covariance matrix Σ

∆et −rt pet pbt

∆et+1 0.005 −0.002 −0.002 0.002
−rt+1 −0.002 0.005 −0.003 −0.005
pet+1 −0.002 −0.003 0.006 0.003
pbt+1 0.002 −0.005 0.003 0.008

where e′3Γe3 is V ar (p̃et) and e′1
[
A
(
I − ρhAh

)
(I − ρA)−1]Γe3 and e′2

[
A
(
I − ρhAh

)
(I − ρA)−1]Γe3

represent the covariance of the price-earnings ratio with future earnings growth and negative

future returns. At the infinite horizon, this simplifies to

CF∞ =
e′1WΓe3
e′3Γe3

(A9)

DR∞ =
e′2WΓe3
e′3Γe3

. (A10)

Similarly, to obtain the infinite-horizon estimates for the price-book ratio in Table II we
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have that

Cov

(
∞∑
j=1

ρj−1∆ẽt+j, p̃bt

)
V ar

(
p̃bt

) =
e′1WΓe4
e′4Γe4

(A11)

Cov

(
−

∞∑
j=1

ρj−1r̃t+j, p̃bt

)
V ar

(
p̃bt

) =
e′2WΓe4
e′4Γe4

. (A12)

Finally, the revisions in expected future earnings growth and returns observed in Table

VII are defined as e′1Wεt and −e′2Wεt, which means that

V ar (Revet ) = e′1WΣW ′e1 (A13)

V ar (Revrt ) = e′2WΣW ′e2. (A14)

C. Model simulations

For each model, we simulate the cross-section of firms. We set the number of firms based on

the original calculations in each paper. Specifically, we use 50, 2,500, 5,000, 200, 1,000, and

2,500 firms for Berk et al. (1999), Lewellen and Shanken (2002), Zhang (2005), Lettau and

Wachter (2007), Alti and Tetlock (2014), and Kogan and Papanikolaou (2014) respectively.

We set every sample to a length of 50 years to align with our empirical exercise and we run

1,000 simulations for each model. All parameter values are taken from the original papers.

For Lewellen and Shanken (2002) and Lettau and Wachter (2007), the only firm variables

are prices and dividends, so we treat dividends as our measure of earnings and sort firms

into five portfolios based on their price-dividend ratios. For the two models based on firms

exogenously receiving new projects (Berk et al. 1999; Kogan and Papanikolaou 2014), we

treat cash flows from existing projects as our measure of earnings and sort firms into five

portfolios based on their price-book ratios. For the two models based on firms producing

with capital subject to adjustment costs (Zhang 2005; Alti and Tetlock 2014), we measure

earnings as profits from existing capital minus any costs to maintain or adjust capital, and
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we sort firms into portfolios based on their price-book ratios. We then estimate the finite-

horizon decomposition in equation (3) as well as the full horizon decomposition in equation

(5) for each model.

C.1. Details for Lewellen and Shanken 2002

We focus on their quantitative model with renewing parameter uncertainty. For each firm,

earnings growth is objectively

∆ei,t = gi + εi,t

where gi is an unknown parameter to the agent. To ensure the agent does not fully learn the

parameters, the values for gi are redrawn every K periods. After t periods in the current

regime, her best guess of the mean growth is

mi,t =
h

t+ h
g∗ +

t

t+ h
ḡi,t

where ḡi,t is the average realized earnings growth over the last t periods, g∗ is the uncondi-

tional mean of the distribution from which gi is drawn, and h is a parameter controlling the

strength of the agent’s prior.

The paper considers multiple values for K and h, as well as s which controls the distri-

bution from which gi is drawn. We use h = s = 25 for our simulations, as this is the middle

of the distribution of h and s values considered in the paper. To emphasize that cash flow

news remains small even when agents have a non-trivial amount of time to observe the noisy

process, we use K = 38, as this is the maximum value considered in the paper.

C.2. Details for models with adjustment costs

In the model of Zhang 2005, firm earnings are

Ei,t = ext+zi,t+ptkα
i,t − f − ii,t − h (ii,t, ki,t)
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where xt is aggregate productivity, zi,t is idiosyncratic productivity, pt is the aggregate price

level, ki,t is firm-level capital, f is a fixed cost, ii,t is investment in capital, and h (ii,t, ki,t) is

an adjustment cost. In the model of Alti and Tetlock 2014, firm earnings are

Ei,tdt =
(
fi,tdt+ σhdω

h
i,t

)
m1−α

t Kα
i,t − Ii,tdt−Ψ(Ii,t, Ki,t) dt

where fi,t is idiosyncratic productivity, dωh
i,t is a white noise shock, mt is aggregate produc-

tivity, Ki,t is firm-level capital, Ii,t is investment in capital, and Ψ(Ii,t, Ki,t) is an adjustment

cost.

In order to calculate cash flow news and discount rate news for these two models, we

have to address the issue that model earnings are sometimes negative, even at the portfolio

level, due to the quadratic adjustment costs. In these models, this can be thought of as

the firm raising additional funds. These negative cash flows (i.e., raising new funds) are not

compatible with the Campbell-Shiller log-linearized decomposition. To use the decomposi-

tion, we want to think about an investor that makes a one-time payment to buy a claim to

the company, never pays anything more in the future, and receives some cash flows in the

future.

Thus, we will think of an investor that holds some share χi,t of the company. When the

company has positive cash flows, the investor does not change her share in the company

and receives these cash flows. When the company has negative cash flows, we assume the

investor sells a part of her stake in the company to cover this. Specifically, this investor

receives cash flows Êi,t ≡ χi,t max {Ei,t, 0}, where χi,t = χi,t−1 (1 + min {Ei,t, 0} /Pi,t) and

Pi,t is the market value of the firm. Intuitively, rather than receiving a negative cash flow,

this investor dilutes her claim to the future (on average positive) cash flows. This investor

receives the same return as someone who owned the entire firm and received the negative

cash flows, χi,tPi,t+Êi,t

χi,t−1Pi,t−1
≡ Pi,t+Ei,t

Pi,t−1
. Therefore, this adjustment has no effect on the return

differences between value and growth stocks and simply acts to smooth out the earnings

differences.
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D. Wild bootstrap procedure

This section describes the wild bootstrap procedure underlying the empirical p-values in

Section VI.B. The resampling process is based on Cavaliere, Rahbek, and Taylor (2012) and

Huang et al. (2015) and it is adapted to a multi-horizon framework.

The main persistence value of ϕ̂ = 0.953 is calculated by taking the average of the implied

persistences estimated in equation (19) across all horizons after adjustment for Stambaugh

(1999) small-sample bias. The reduced-bias estimate is obtained by adjusting the OLS

estimate with the analytical expression for its small-sample bias following Amihud, Hurvich,

and Wang (2009). For each portfolio i and for each horizon h, we construct the estimated

residuals under the null hypothesis as:

ε̂ei,t+h = ∆ẽi,t+h − ϕ̂h−1
(
1− ρϕ̂

)
p̃ei,t

ε̂ri,t+h = −r̃i,t+h

ε̂pei,t+h =
(
p̃ei,t+h−1 − ρp̃ei,t+h

)
− ϕ̂h−1

(
1− ρϕ̂

)
p̃ei,t

where the null hypothesis is imposed in β̂e
h = ϕ̂h−1

(
1− ρϕ̂

)
and β̂r

h = 0.

Based on this estimate, for each simulation we draw an i.i.d. sequence wi,t from the

two-point Rademacher distribution:

wi,t =


−1 with probability 1/2

1 with probability 1/2

We then construct a pseudosample of prices

p̃ei,t+1 = ϕ̂p̃ei,t + ε̂pei,t+1 · wi,t+1

and a pseudosample of earnings growth and returns

∆ẽi,t+h = β̂e
hp̃ei,t + ε̂ei,t+h · wi,t+h

−r̃i,t+h = ε̂ri,t+h · wi,t+h

Note that, on each simulation, we multiply the fitted residuals with the same component



Figure A1. Predictability of non-cumulative returns and earnings growth. This
figure visualizes the probabilities of observing the results of Table VI in the absence of return predictability
under different persistences of the price-earnings ratio. For 1000 wild bootstrap simulations, the red line
shows for every horizon the share of simulated βr

h t-statistics greater than the observed t-statistic in the
data. The blue line shows for every horizon the share of simulated βe

h t-statistics smaller than the observed
t-statistic in the data.

wi,t used to generate the price-earnings ratios. This way, the methodology not only captures

general forms of conditional heteroskedasticity, but it also preserves any correlation structure

between the endogenous predictor, the price-earnings ratio, and the lagged returns and

earnings growth. After the pseudosample is constructed, we estimate the regressions (17)-

(19) and their corresponding t-statistics. We repeat this process 1000 times. The empirical

p-value shown in Figure 3 is the proportion of the bootstrapped t-statistics greater (less)

than the t-statistic for the original sample.

We test whether the conclusion of this inference changes using different values for the

persistence ϕ̂. Figure A1 shows the results of the simulation using three different values of ϕ̂ :

the two extreme values of the interval ϕ = (0.888, 0.993), which covers all estimated values of

equation (19) after adjusting for Stambaugh small-sample bias, as well as an extreme upper

bound value of ϕ̂ = 0.999.

E. Robustness tests
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Table AIII

Decomposition of differences in price-earnings ratios: Alternative specifications
This table decomposes the variance of price-earnings ratios under two alternative specifications. The first specification estimates
equation (3) using three-year smoothed earnings instead of annual earnings to form the valuation ratio. Let st be the five-year
smoothed average of earnings. For each period, we form value-weighted portfolios and track their buy-and-hold smoothed
earnings growth (

∑h
j=1 ρ

j−1∆s̃t+j), negative returns (−
∑h

j=1 ρ
j−1r̃t+j), and price-to-smoothed-earnings ratio (p̃st+h) for

every horizon up to fifteen years. The columns show the coefficients from univariate regressions of earnings growth, negative
returns and future price-to-smoothed-earnings ratios on current price-to-smoothed-earnings ratios. The second specification
reinvests the delisting returns of exiting firms in the corresponding portfolio. All variables are cross-sectionally demeaned.
Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each coefficient. Superscripts indicate
block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to 2020.

Price-to-smoothed earnings Delisting returns

CFh DRh FPEh CFh DRh FPEh

1 0.121*** 0.041* 0.839*** 0.100*** 0.043 0.859***
s.e. (D-K) [0.019] [0.028] [0.026] [0.024] [0.034] [0.026]
s.e. (boot) [0.014] [0.024] [0.021] [0.021] [0.029] [0.022]

3 0.206*** 0.155** 0.644*** 0.092** 0.181*** 0.733***
[0.036] [0.062] [0.043] [0.039] [0.07] [0.051]
[0.035] [0.057] [0.039] [0.041] [0.067] [0.047]

5 0.201*** 0.236*** 0.568*** 0.115*** 0.275*** 0.617***
[0.037] [0.081] [0.056] [0.038] [0.091] [0.07]
[0.037] [0.081] [0.054] [0.04] [0.091] [0.07]

8 0.229*** 0.341*** 0.437*** 0.146*** 0.402*** 0.461***
[0.037] [0.083] [0.061] [0.04] [0.091] [0.076]
[0.037] [0.083] [0.058] [0.042] [0.091] [0.078]

10 0.252*** 0.385*** 0.37*** 0.167*** 0.457*** 0.387***
[0.035] [0.073] [0.057] [0.038] [0.077] [0.069]
[0.038] [0.081] [0.055] [0.042] [0.078] [0.066]

13 0.281*** 0.431*** 0.298*** 0.164*** 0.518*** 0.329***
[0.044] [0.067] [0.048] [0.044] [0.068] [0.05]
[0.05] [0.074] [0.05] [0.049] [0.081] [0.059]

15 0.283*** 0.455*** 0.272*** 0.173*** 0.545*** 0.294***
[0.045] [0.057] [0.040] [0.040] [0.057] [0.043]
[0.045] [0.068] [0.048] [0.042] [0.073] [0.057]



Table AIV

Decomposition of the price-book ratio into future profitability and return
differences

This table decomposes the variance of price-book ratios using the finite version of equation (10) (Vuolteenaho, 2002). The first
column describes the horizon h in years at which the decomposition is evaluated. For each period, we form value-weighted
portfolios and track their buy-and-hold profitability (

∑h
j=1 ρ

j−1π̃t+j), negative returns (−
∑h

j=1 ρ
j−1r̃t+j), , and price-book

ratio (p̃bt+h) for every horizon up to fifteen years. The table reports the coefficients from univariate regressions of the future
profitability, future negative returns, and the future price-book ratio on the current price-book ratio. All variables are cross-
sectionally demeaned. Driscoll-Kraay standard errors and block-bootstrap standard errors are calculated for each coefficient.
Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to
2020.

Cov(p̃bt,·)
V ar(p̃bt)

∑∞
j=1 ρ

j−1π̃t+j −
∑∞

j=1 ρ
j−1r̃t+j ρj p̃bt+j

h = 1 0.068*** 0.012 0.89***
s.e. (D-K) [0.006] [0.017] [0.019]
s.e. (boot) [0.004] [0.013] [0.015]

h = 3 0.168*** 0.06* 0.731***
[0.018] [0.039] [0.034]
[0.015] [0.035] [0.029]

h = 5 0.233*** 0.104** 0.617***
[0.026] [0.052] [0.038]
[0.024] [0.050] [0.033]

h = 8 0.302*** 0.164** 0.507***
[0.032] [0.062] [0.039]
[0.03] [0.066] [0.033]

h = 10 0.337*** 0.197*** 0.45***
[0.032] [0.061] [0.036]
[0.025] [0.066] [0.028]

h = 13 0.381*** 0.238*** 0.379***
[0.031] [0.058] [0.032]
[0.024] [0.061] [0.024]

h = 15 0.409*** 0.264*** 0.349***
[0.031] [0.050] [0.027]
[0.022] [0.059] [0.025]



Table AV

Decomposition of differences in earnings yields for E/P-sorted portfolios
This table decomposes the variance of earnings yields for E/P-sorted portfolios. To most closely align with the exercise in
CPV, we sort all firms into 40 equal value portfolios based on their earnings yields. Given that earnings for these portfolios
can be negative, we utilize the exact identity in equation (16) which allows for negative earnings. For any firms that exit, we
assume a worst-case scenario, which is that all dispersion in earnings yields associated with missing firms is attributed entirely
to the cash flow news component (∆̃(E)

i,t+h). All portfolio-level variables are the value-weighted average of the firm-level values

(θ̃i,t, ∆̃
(E)
i,t+h, ∆̃

(P )
i,t+h, θ̃i,t+h). The columns show the coefficients from univariate regressions of the change in earnings yield due

to changes in earnings (∆̃(E)
i,t+h), the change in earnings yield due to changes in price (∆̃(P )

i,t+h), and the future earnings yield
(θ̃i,t+h) on the current earnings yield (θ̃i,t). All variables are cross-sectionally demeaned. Driscoll-Kraay standard errors and
block-bootstrap standard errors are calculated for each coefficient. Superscripts indicate block-bootstrap significance at the 1%
(∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to 2020.

CFh DRh FPEh

h = 1 0.204*** 0.073*** 0.72***
s.e. (D-K) [0.032] [0.029] [0.029]
s.e. (boot) [0.041] [0.019] [0.026]

h = 3 0.292*** 0.206*** 0.497***
[0.052] [0.051] [0.038]
[0.063] [0.036] [0.037]

h = 5 0.26*** 0.313*** 0.425***
[0.079] [0.069] [0.05]
[0.089] [0.048] [0.048]

h = 8 0.237** 0.416*** 0.346***
[0.073] [0.069] [0.053]
[0.095] [0.063] [0.041]

h = 10 0.19* 0.497*** 0.311***
[0.08] [0.074] [0.054]
[0.104] [0.081] [0.034]

h = 13 0.194* 0.572*** 0.226***
[0.078] [0.065] [0.044]
[0.103] [0.083] [0.028]

h = 15 0.162 0.637*** 0.195***
[0.088] [0.074] [0.033]
[0.118] [0.097] [0.021]


