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Abstract

We theoretically characterize the behavior of machine learning asset pricing models. We

prove that expected out-of-sample model performance—in terms of SDF Sharpe ratio

and test asset pricing errors—is improving in model parameterization (or “complex-

ity”). Our empirical findings verify the theoretically predicted “virtue of complexity”

in the cross-section of stock returns. Models with an extremely large number of factors

(more than the number of training observations or base assets) outperform simpler

alternatives by a large margin.
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1 Introduction

In this paper, we develop a statistical theory of heavily parameterized or “complex” asset

pricing models. We build our analysis around the stochastic discount factor (SDF). A true

SDF, if one exists, is representable as a tradable portfolio (Hansen and Richard, 1987):

Mt+1 = 1− w(Xt)
′Rt+1. (1)

Rt+1 is the vector of excess returns on the N risky assets in the economy. Vector w(Xt)

contains the SDF’s conditional portfolio weights, with Xt representing conditioning variables

that span the time t information set.

The literature has primarily investigated (1) with tightly constrained models of the func-

tion w. A leading example is the Fama and French (1993) model, which restricts Mt+1 to a

three-parameter combination of pre-defined portfolios.1 These small SDF parameterizations

are motivated in part by the econometric principle of parsimony (e.g. Tukey, 1961; Box and

Jenkins, 1970).2

1.1 Virtue of Complexity

In contrast to earlier work, an emergent literature documents that extremely large SDF

parameterizations achieve smaller out-of-sample pricing errors than their parsimonious

1The Fama and French (1993) three-factor SDF may be written as w(Xt) = c1wMKT+c1wSMB+c1wHML.
The weights wMKT , wSMB , and wHML use information such as assets’ market values and book-to-market
ratios to construct factor weights in an entirely researcher-dictated manner with no estimated parameters.
The three corresponding factors must then be aggregated into an SDF based on three estimated parameters:
c1, c2, and c3.

2Economic theory also motivates functional restrictions on the SDF (e.g. Hansen and Singleton, 1982).
However, restrictions derived from economic theory have had limited success to date in pricing cross-sections
of assets such as stocks, bonds, and derivatives. The Fama-French SDF function and many other factor
models in the literature are motivated by empirical “anomalies” vis-a-vis the CAPM and not by a particular
economic theory.
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predecessors.3 An understanding of this surprising empirical phenomenon is only beginning

to take shape. Kelly et al. (2021) (KMZ henceforth) provide a first step by theoretically

characterizing the behavior of high-dimensional machine learning models in return prediction

applications. They prove under general conditions that the performance of time series

forecasting models—both in terms of forecast accuracy and market timing strategy returns—

is increasing in model complexity.

The first contribution of our paper is to move beyond the pure prediction setting of

KMZ and theoretically characterize the “virtue of complexity” in highly parameterized asset

pricing models. To do so, we build on KMZ in two ways. First, we reorient the statistical

objective from time series forecasting to SDF estimation—that is, minimizing pricing errors

among test assets and maximizing the SDF Sharpe ratio. Second, we move from the single

asset time series setting to a panel setting with an arbitrary number of risky assets. Like

KMZ, we study a class of high-dimensional ridge estimators that provides the necessary

analytical link to randommatrix theory that underpins our theoretical analysis. We explicitly

derive key properties of an SDF—its expected out-of-sample Sharpe ratio and pricing errors—

when the number of SDF parameters becomes large.4

We discuss two interesting interpretations of the virtue of complexity in SDF models.

The first is that a complex SDF is a factor pricing model with an extremely large number

of factors. A large SDF approximating model of this sort may be written as w(Xt) ≈∑P
p=1 λpSp(Xt), where each Sp(Xt) is some nonlinear basis function of Xt. Thus, the SDF

3Examples include Gu et al. (2020a), Kozak et al. (2020), Kelly et al. (2020), Chen et al. (2023), and
Preite et al. (2022), among others. See Kelly and Xiu (2023) for a survey of financial machine learning,
including machine learning models of the SDF.

4From a technical standpoint, we overcome a number of new theoretical hurdles relative to KMZ. In time
series regressions of KMZ, the random matrix behavior of time series signal covariances dictates the market
timing strategies. In the panel problem, behavior is determined not just by time series covariances but also
by the covariance of signals across assets. Most importantly, we remove the equal ex-ante predictive power
assumption of KMZ and allow for a generic distribution of risk premia across factors.
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approximation is

Mt+1 ≈ 1−
∑
p

λpFp,t+1, (2)

and each “factor” Fp,t+1 is a characteristic-managed portfolio of base assets that uses the

nonlinear asset “characteristics” Sp(Xt) as portfolio weights. From this representation, our

main result shows that the out-of-sample pricing errors from a factor pricing model are

decreasing in the number of factors. This interpretation of the virtue of complexity is a

challenge for the traditional APT perspective that a small number of risk factors should

capture the risk-return tradeoff among assets. We establish the surprising result that even

if arbitrage is absent and an SDF exists, it is possible to continually find new empirical

“risk” factors that are unpriced by others and that adding these factors to the pricing model

continually improves its out-of-sample performance.

The second interpretation is based on the theoretical equivalence of an SDF and the

mean-variance optimal portfolio. We prove that the out-of-sample efficient portfolio of risky

assets improves with the number of managed portfolios Fp,t+1 that it incorporates. That

is, the best mean-variance trading strategy available to an investor combines an exorbitant

number of factors, with each of these factors themselves a trading strategy based on a single

nonlinear basis function of the conditioning variables. The virtue of SDF complexity means

that we can always find a new, nonlinear characteristic factor that boosts the out-of-sample

Sharpe ratio of the efficient portfolio, even when the “true” model ensures no arbitrage.

This interpretation helps rationalize the prominence of “anomaly” portfolios in empirical

asset pricing. The abundance of anomalies (or so-called “factor zoo”) is not a puzzle to be

solved or evidence of a corrupt research process.5 Instead, it is the theoretically expected

5Jensen et al. (Forthcoming) reach a similar conclusion based on the rationale that the risk-return trade-
off is difficult to measure and complexity manifests as an inability to find a single silver-bullet characteristic
that pins down expected returns. Instead, researchers gradually expand and refine the set of noisy signals
and conclude “a more positive take on the factor zoo is not as a collective exercise in data mining and false
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outcome in a complex asset pricing environment. In fact, our theory argues that the extant

factor zoo is too small and that an SDF model can be beneficially expanded to incorporate

a teeming Noah’s ark of factors by transforming raw asset characteristics into a wide variety

of nonlinear signals (buttressed by appropriate shrinkage). Such a large factor set improves

the out-of-sample Sharpe ratio of the SDF and reduces out-of-sample pricing errors.

As a corollary, we theoretically prove a long-standing conjecture6 in the literature that

managed portfolios are sufficient for approximating the conditionally efficient portfolio. This

is true, however, only in the high complexity limit. The true SDF is the conditional

Markowitz portfolio of base assets Rt. It thus requires the true conditional covariance matrix

of Rt, though this is unobservable and impossible to recover in small samples. We show that

with a complex model, the best portfolio available to an investor need not estimate the

covariance of Rt at all. Instead, the investor needs only find the unconditionally optimal

portfolio of factors.

1.2 Limits to Learning

Low complexity settings—with many more observations than parameters to estimate—are

the purview of traditional econometrics. In these conditions, the law of large numbers

kicks in, and appropriate estimators tend to recover the true model.7 In high-complexity

settings, the number of parameters is large relative to the number of observations—this is

the machine learning case. Here, the law of large numbers breaks down and even correctly

specified estimators fail to converge on the true model because there is not enough data to

go around. This failure to fully hone in on the truth results in an asymptotic wedge between

the out-of-sample performance of the trained model and that of the true model. We refer to

discovery, but rather as a natural outcome of a decentralized effort in which researchers make contributions
that are correlated with, but incrementally improve on, the body of knowledge.”

6This conjecture is clearly articulated by Kozak and Nagel (2023).
7If the model is correctly specified. If the model is mis-specified, estimators recover the nearest “pseudo-

true” parameters (e.g. White, 1996).
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this as “limits to learning.” Perhaps surprisingly, our theory can explicitly quantify limits

to learning based on the properties of the training sample.

Limits to learning are intimately connected to the phenomenon of in-sample overfit.

When the number of parameters is large relative to the number of observations, in-sample

model performance is exaggerated. Overfit is defined as the difference between the in-

sample performance of the trained model versus the performance of the true but infeasible

model. Note that the term overfit is sometimes a misnomer. In high complexity models,

overfit is driven primarily by the dearth of training observations rather than by excessive

parameterization.8

Together, limits to learning and overfit make up the “complexity wedge,” which is the

difference between in-sample model performance and expected out-of-sample performance,

which decomposes into overfit plus limits to learning:

Complexity Wedge = In-sample Performance−Out-of-sample Performance

= (In-sample Performance− True Predictability)

− (Out-of-sample Performance− True Predictability)

= Overfit + Limits to Learning,

Complexity wedges can be partially mitigated by shrinkage, which reduces the extent of

overfit and improves the limits to learning. But as long as complexity is greater than zero,

the complexity wedge and its components are positive regardless of the amount of shrinkage.

When complexity is low, the law of large numbers eliminates these wedges because expected

in-sample, out-of-sample, and true performance are equalized.

8This is most easily understood in the case of a correctly specified model which, by definition, has no
“excess” parameters. Yet, with insufficient data, it produces in-sample fits that exceed the fit of the true
model. For example, when P ≥ T , one can achieve perfect in-sample fits because there are enough parameters
to fit each training observation, but out-of-sample performance will suffer because the model was underfitted
(it did not see enough training data to learn the true model).
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1.3 Evaluating Machine Learning Asset Pricing Models

Our third main contribution proposes an approach to asset pricing model evaluation for

the machine learning context. An immediate implication of the complexity wedge is

that traditional approaches to model evaluation—which generally involve some form of

significance test for in-sample pricing errors—lose their meaning for heavily parameterized

models.

Machine learning asset pricing models must be evaluated based on out-of-sample per-

formance. As a replacement for in-sample comparisons, we recommend comparing highly

parameterized models based on the out-of-sample Hansen-Jagannathan distance (HJD).

The HJD (Hansen and Jagannathan, 1997) has a number of attractive model comparison

properties.9 First, it averages pricing errors among test assets using a common weighting

matrix for all models. This is important because it puts all models on equal footing for

comparison, unlike other alpha or GMM-based comparisons. Second, the weighting matrix

is economically motivated and can be interpreted as the pricing error of the portfolio of

test assets that is most mispriced by each model. Third, while typically used for in-sample

comparison, the HJD easily generalizes for out-of-sample evaluation because it avoids the

need to estimate out-of-sample time series alphas and betas for each test asset. Fourth,

because our theoretical derivations explicitly characterize the expected out-of-sample HJD for

complex SDF models, the empirical HJD can be directly compared to theoretical predictions.

These properties of the out-of-sample HJD make it a valuable tool for model evaluation in

the age of machine learning. Each research team that proposes a new machine learning asset

pricing model can publicly post a data set with out-of-sample SDF returns from their model.

As new models are developed, they may be compared to previously proposed models based

via HJD.10 A particularly interesting aspect of this protocol is that it forces the researcher

9In addition to (Hansen and Jagannathan, 1997), the literature has further highlighted advantages of the
HJD, including Kan and Robotti (2009), Chen and Ludvigson (2009), and Kelly and Xiu (2023).

10The question of test assets is at the discretion of researchers, and the set of extant models may be
re-scrutinized via the HJD for new and perhaps more demanding test assets.
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to settle on a univariate SDF representation of their model rather than a multivariate factor

representation. This means that the researcher must take a stand on the SDF’s factor

weights in real time and let the out-of-sample SDF returns fall where they may. For example,

evaluating the Fama-French model in this way requires the researcher to decide on MKT,

SMB, and HML weights based on training data and report the univariate out-of-sample SDF

returns for HJD evaluation. Furthermore, this puts both parsimonious asset pricing models

(like Fama-French) and heavily parameterized machine learning models on equal footing for

out-of-sample comparison. These comparisons teach us both about the merit of candidate

machine learning architectures and the merit of (implicit) priors imposed by researchers who

advocate for simpler models.

1.4 Empirical Findings

Our final contribution is an empirical investigation of our theoretical predictions. We design

data experiments that mirror our theoretical environment in order to evaluate the role of

complexity in the performance of empirical asset pricing models. We study the sample of

monthly US stocks and fix the conditioning set—Xt in equation (1)—to be a large collection

of 130 stock-level predictors from Jensen et al. (Forthcoming). To vary our empirical models

from low to high complexity, we adapt the machine learning method of random features

regression (as used in KMZ) to the SDF estimation problem. This converts the fixed set

of raw stock characteristics into any desired number P of “random features.” The random

features constitute an arbitrarily rich set of nonlinear transformations of the raw variables,

equivalent to the features engineered in the hidden layer of a wide two-layer neural network.11

A key attraction of this formulation is the ability to evaluate the effects of empirical SDF

11In the first layer of the network, fixed weights (randomly drawn, as opposed to estimated) aggregate the
raw inputs Xt which are then fed through a nonlinear activation function to produce the “random features”
St. In the second layer, the random features are combined with estimated weights to optimize the SDF
performance objective (with ridge shrinkage).
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complexity simply by varying the number of random features derived from the conditioning

set Xt (while holding Xt itself fixed).

Our first empirical result documents a virtue of complexity in pricing the cross-section

of returns. We find that the realized out-of-sample performance of the empirical SDF

generally improves with model complexity. Increasing the number of model parameters

(i.e., the number of factors) consistently raises the out-of-sample SDF Sharpe ratio and

reduces its out-of-sample pricing errors in a manner that closely tracks our theoretical

predictions. Our empirical “VoC curves,” which plot model performance as a function

of model complexity, support the theoretical prediction that the gains in approximation

accuracy from incorporating more model parameters dominate the statistical costs of esti-

mating those additional parameters. Our high-complexity models also outperform standard

low-dimensional benchmark models (such as the Fama-French model) by a large margin.

The virtue of complexity in our empirical asset pricing models is robust. It is not driven

by any particular subset of the stock universe. We find nearly identical patterns in complex

model behavior when the SDF is estimated only from a subset of the broader sample (e.g.,

among stocks broken in various market capitalization groups). Recent literature notes that

some results in the financial machine learning literature result in infeasible trading strategies

that are heavily dependent on predictability induced by limits-to-arbitrage (e.g. Jensen et al.,

2022; Avramov et al., 2023). We show that our results are robust to excluding high-turnover

signals and when restricting the sample to the largest and most liquid US stocks.

To further elaborate the virtue of complexity in empirical asset pricing models, we replace

the large set of 130 stock characteristics in Xt with the smaller set of five characteristics

underlying the Fama-French model. We show that even if one were to prefer this narrow

set of characteristics, out-of-sample SDF performance is improved by increasing the number

of model parameters. Compared to the original Fama-French model, out-of-sample pricing
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errors are cut by more than half by including thousands of factors formed from nonlinear

transformations of the five underlying Fama-French characteristics.

Recent work by (Kozak et al., 2020) suggests that a successful SDF does not require many

factors because the asset pricing properties of those factors are adequately summarized by a

small number of their principal components.12 Their “sparse PC-based SDF” cleverly avoids

model complexity through a dimension reduction of the factors. This begs the question:

Can complex models be reduced to achieve similar performance with potentially many fewer

parameters? We show that this is not possible. For each complex model that we study,

we consider replacing its large number of factors with a smaller number of their principal

components. We show that dimension reduction significantly impairs performance relative

to the full complex model.

1.5 Literature

This paper is broadly related to the financial machine-learning literature.13 Within this

literature it relates particularly closely to machine learning methods that directly estimate

the SDF from characteristic-based factors and focus on the link between the SDF and

conditionally efficient portfolios. Empirical work in this vein includes Brandt et al. (2009),

Kozak et al. (2020), DeMiguel et al. (2020), Chen et al. (2023), Bryzgalova et al. (2020),

and Liu et al. (2020). Our paper establishes the theoretical foundations for using heavily

parameterized models for SDF estimation.

Our theoretical analysis is also related to the literature on conditional SDF estimation and

the conditional Hansen-Jagannathan distance (e.g. Nagel and Singleton, 2011; Antoine et al.,

2020a,b; Gagliardini and Ronchetti, 2020, and references therein). As Antoine et al. (2020a)

argue, an SDF constructed from factors is “pseudo-true” because it is mis-specified and, even

12Relatedly, papers such as Lettau and Pelger (2020), Kelly et al. (2020), and Gu et al. (2020a) demonstrate
the success of dimension reduction methods when estimating asset pricing models with a large number of
candidate factors.

13See Kelly and Xiu (2023) for a recent survey.
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in the large sample (zero complexity) limit, only converges to the best approximate SDF in

the space of SDFs spanned by factors. Our results imply that mis-specification vanishes in

the limit of a very large number of factors and the pseudo-true SDF converges to the truth.

However, the cost of this improved approximation is increased complexity, the associated

breakdown of the law of large numbers, and estimation errors that survive even in large

samples. We derive explicit expressions for these errors (dubbed “limits to learning” in our

paper) and show that, despite these errors, SDF approximation improvements afforded by

large factor models are well worth the added statistical complexity.

Our paper also relates to machine learning methods for analyzing factor pricing models,

including Connor et al. (2012), Fan et al. (2016), Kelly et al. (2020), Lettau and Pelger

(2020), Giglio and Xiu (2021), Gu et al. (2020a), and Giglio et al. (2022). These papers

provide evidence that introducing conditioning information into latent factor betas improves

model performance. Many papers in this line of work argue that retaining a few leading

principal components is sufficient to explain the cross-section of returns. This typically

results in a low-complexity model environment in which the true conditional SDF can be

consistently estimated. In contrast, we work in a theoretical setting where complexity

precludes consistent recovery of the SDF. In this sense, our paper is part of an emergent

literature analyzing “limits to learning,” or the fact that realistically complex asset pricing

models cannot be accurately recovered from the limited size of financial data sets (see Martin

and Nagel, 2021; Da et al., 2022). Our theory and empirics show that, despite limits to

learning in complex environments, high-complexity models deliver more powerful out-of-

sample performance than low-complexity models.

Through its coupling with the literature on high-dimensional factor pricing models,

our work also relates to the empirical literature surrounding the “factor zoo” and factor

replicability, including Cochrane (2011), Harvey et al. (2016), McLean and Pontiff (2016),

Hou et al. (2020), Feng et al. (2020), Jensen et al. (Forthcoming), and Chen and Zimmermann
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(2021). Our theoretical analysis helps rationalize the continued discovery of unspanned

factors that capture nonlinear impacts of conditioning variables on the SDF that are missed

by simpler precedent models.

Many papers in the financial machine learning literature focus on predicting asset returns

using complex machine learning models, including Chinco et al. (2019), Han et al. (2019),

Freyberger et al. (2020), Rapach and Zhou (2020), Gu et al. (2020b), Avramov et al. (2023),

and Guijarro-Ordonez et al. (2021). While this literature is largely agnostic about the link

between expected returns and the risk-return tradeoff, its demonstrated success in predicting

the cross-section of returns with heavily parameterized models is a manifestation of the virtue

of complexity in the panel setting developed in this paper.

In the remainder of the paper, Section 2 outlines the foundational assumptions of our

theory. Sections 3 and 4 provide our core theoretical analyses of complex SDF models in

the correctly specified and mis-specified settings, respectively. Section 5 documents the

empirical virtue of complexity in a canonical data set of monthly US stock returns and

stock-level predictors, and Section 6 concludes.

2 Environment

In this section, we present assumptions that form the foundation of our theoretical results

in Sections 3 and 4.

2.1 Assets and Conditioning Information

Our first assumption concerns the conditional properties of risky assets in the economy.

Assumption 1 (Returns Have a Conditional Factor Structure) There exist load-

ings St ∈ RN×P , latent factors F̃t+1, and idiosyncratic shocks εt+1 such that returns

12



Rt+1 ∈ RN satisfy

Rt+1 = StF̃t+1 + εt+1, (3)

where Et[εt+1] = 0 and Et[εt+1ε
′
t+1] = Σε,t. The latent factors satisfy Et[F̃t+1] = λF

14 and

ΣF,t = Et[F̃t+1F̃
′
t+1] satisfies tr(ΣF,t) = O(1) as P → ∞.

The SDF summarizes the risk-return tradeoff among N risky assets in the economy.

Thus, to make progress on characterizing SDF behavior, we require assumptions on assets’

dependence structure and expected returns. We assume that asset riskiness is describable

with a latent factor structure. The factor structure in (3) is generic. It allows for an arbitrary

number of factors P , with the only restriction being that the trace of the factor covariance

matrix remains bounded.15

We are especially interested in understanding the behavior of conditional asset pricing

models. Assumption 1 defines the relevant conditioning information in this economy. As

natural in a factor pricing model, conditioning information is summarized by the conditional

factor loadings, denoted by St (an N × P matrix). Throughout, we also refer to St as

“characteristics” or “signals” in connection with the empirical asset pricing literature.16 The

P -vector of factor risk prices, denoted λF , together with the conditional loadings determine

asset expected returns. We make the following assumption about the covariance structure

of the signals St.

Assumption 2 We have St = Σ1/2XtΨ
1/2 for some positive definite matrices Σ,Ψ; here,

the random variables Xi,k,t satisfy E[Xi,k,t] = 0, E[X2
i,k,t] = 1, and Xi,k,t are independent

14The assumption of constant conditional expected returns is without loss of generality and can be achieved
by expanding the set of factors.

15The assumption tr(ΣF,t) = O(1) as P → ∞ is the mathematical formalization of the idea of a factor
structure. For example, if ΣF has a finite rank K with bounded eigenvalues, then this condition is trivially
satisfied.

16One can think of the loadings as some function of other underlying conditioning characteristics, or the
characteristics could be loadings themselves as in the BARRA model popular among industry professionals.
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and have uniformly bounded sixth moments. In the limit as N, P → ∞, both Σ and

Ψ stay uniformly bounded, tr(Σ) is uniformly bounded, and limN→∞ tr(Σ2)/(tr(Σ))2 =

limN→∞ tr((Σ−1
ε,tΣ)

2)/(tr(Σ−1
ε,tΣ))

2 = 0.

By Assumption 2,

E[S ′
tSt] = tr(Σ)Ψ ∈ RP×P and E[StS

′
t] = tr(Ψ)Σ ∈ RN×N . (4)

While the matrix Ψ captures the covariance structure of signals across factors, Σ captures

the covariance structure of signals across assets. The assumption of bounded tr(Σ) is a no-

arbitrage condition, ensuring that the predictable variation in returns stays bounded. The

last two limits in Assumption 2 ensure that the Herfindahl indices of the eigenvalues of Σ and

Σ−1
ε,tΣ converge to zero.17 These assumptions guarantee that characteristics-based portfolios

offer a sufficient amount of diversification across stocks.18

2.2 Neural Network Interpretation

The structure of returns in Assumption 1 has a clear machine-learning interpretation.

Imagine for a moment that returns on asset i are generated by a low-dimensional factor

model like those common in economic theory,19

Ri,t+1 = β(Xi,t)
′Gt+1 + ui,t+1, (6)

17For a matrix A with eigenvalues λ1, · · · , λN , we have tr(A2)/ tr(A)2 =
∑

i λ
2
i

(
∑

i λi)2
.

18For example, suppose that rankΣ = 1, so that Σ1/2 = ππ′ for some π ∈ RN . Then, St = ππ′XtΨ
1/2 and

therefore all factors are given by

Ft+1 = Ψ1/2X ′
tπ(π

′Rt+1) , (5)

implying that all factor returns are proportional to returns on a single portfolio, π′Rt+1. Thus, there are no
diversification benefits from constructing a portfolio of factors. The same happens when Σ has only a few
large eigenvalues. Assumption 2 ensures that this pathological situation cannot occur.

19Santos and Veronesi (2004) is an example asset pricing theory that generates a conditional beta
formulation along these lines.
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where Xi,t is a vector of J conditioning variables that determines i’s conditional betas on a

small number K of latent factors, Gt+1. Absent knowledge of the specific functional form

for the conditional beta function, one can use a machine learning model to approximate

it. For example, a shallow neural network could replace the K × 1 vector β(Xi,t) with the

approximation

β(Xi,t) ≈
P∑

p=1

ξp Si,t,p = Ξ︸︷︷︸
K×P

Si,t︸︷︷︸
P×1

, (7)

where

Si,t = A(ΩXi,t) = (A(ω′
pXi,t))

P
p=1 . (8)

The neural network model approximates the unknown beta function with a linear combina-

tion of “generated conditioning variables” denoted Si,t,p. Specifically, each Si,t,p is a basis

function that captures nonlinear predictive information in the raw conditioning variablesXi,t.

To build the basis functions, the neural network first generates a J × P matrix Ω = (ωp)
P
p=1

of weights with rows ωp to combine the elements of Xi,t into P different linear combinations

of ΩXi,t ∈ RP . Next, these linear combinations are transformed by a nonlinear activation

function A(x), so that we end up with nonlinear features Si,t = A(ΩXi,t) ∈ RP . Then,

equation (7) collects the P basis terms into a weighted sum in order to approximate β(Xi,t).

The K × 1 vectors ξp determine how each nonlinear basis term best contributes to the

approximation of each of the K betas. We can write this sum in a matrix form by collecting

the basis terms into a P × 1 vector Si,t and the weights into the K ×P matrix Ξ. Universal

approximation theory such as Hornik et al. (1989) ensures that the formulation in (7) can

accurately approximate the true conditional beta function under regularity conditions.20

20The approximating structure in (7) is analyzed by Gu et al. (2020a) and is a semi-nonparametric
extension of the IPCA model in Kelly et al. (2020).

15



To tie this back to Assumption 1, we may stack assets’ beta coefficients into an N ×K

matrix and substitute (7) into (6) to deliver

Rt+1 ≈ StFt+1 + ut+1, (9)

where F̃t+1 = Ξ′Gt+1 (and likewise λF = Ξ′Et[Gt+1]). The key point of this neural network

example is that, while Assumption 1 treats the factor loadings St as known and potentially

high-dimensional, we interpret it as a generic statistical specification that arises from machine

learning approximations to an unknown (and likely low-dimensional) factor pricing model.

2.3 Efficient Portfolios and Characteristic-managed Portfolios

From the equivalence of an SDF and the mean-variance efficient portfolio, Assumption 1

trivially implies the following SDF representation.

Proposition 1 A conditional stochastic discount factor is

M̃t+1 = 1 − w̃(St)
′Rt+1 , (10)

where

w̃(St) = (StΣF,tS
′
t + Σε,t)

−1StλF (11)

is the conditional mean-variance efficient portfolio and

Et[Ri,t+1M̃t+1] = 0, i = 1, · · · , N . (12)

The SDF in (10) is stated as a portfolio of the basic risky assets, R. Estimating the

conditional mean-variance portfolio of basic assets is extremely challenging. Not only does it
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require estimates of means and covariances for a large number of assets, but it also requires

these moments in conditional terms.

To avoid the difficult task of modeling the conditional distribution of basic assets, it is

common in the empirical literature to instead study characteristic-managed portfolios,21

Ft+1 = S ′
tRt+1. (13)

The hope is that by studying the unconditional properties of factors, we can learn about

the conditional properties of asset markets. The conjecture underlying this approach is

that, by interacting basic asset returns with conditioning characteristics, managed portfolios

succinctly capture the conditional properties of asset returns. For example, Kozak et al.

(2020) approximate the conditional SDF using the unconditional mean-variance efficient

portfolio of managed portfolios.22 Yet it is easy to see that the mean-variance portfolio of

Ft,

λ = E[Ft+1F
′
t+1]

−1E[Ft+1] (14)

is generally different from the conditionally efficient portfolio of basic assets that determines

the true SDF in (10). This is particularly true for standard, low-dimensional factor models

(e.g., when Ft is the vector of Fama-French factors).

We prove the surprising result that, in the high complexity (large P ) setting, the

unconditional optimal portfolio of factors and the true conditional SDF indeed coincide.

Proposition 2 (Unconditionally Optimal Portfolios of Factors Are Conditionally Optimal)

Suppose that in the limit, as P → ∞, the vector of latent risk premia λF is uniformly bounded

21The literature often refers to the managed portfolios Ft as “factors,” and we adhere to this slight abuse
of nomenclature when the difference between Ft and the true factors F̃t is clear.

22Relatedly, to help justify the empirical approach of Kozak et al. (2020), Kozak and Nagel (2023) discuss
the somewhat restrictive conditions under which managed portfolios “span” the conditional SDF.
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and satisfies

λ′FAλF → 0 (15)

in probability, for any symmetric, positive definite A with uniformly bounded trace.23 Suppose

also that Σε,t = σtI for some σt > 0,24 and let

Mt+1 = 1− λ′Ft+1 = 1 − w(St)
′Rt+1, with w(St) = λ′St , (16)

be the factor approximation for the SDF with λ given by (14). Then, Mt+1 converges to M̃t+1

in probability and the Sharpe ratio of w(St)
′Rt+1 converges to that of w̃(St)

′Rt+1 as P → ∞.

This result is striking. It states that as long as the number of factors is large, factors

are indeed sufficient to recover the conditionally efficient portfolio and, thus, the SDF. The

condition λ′FAλF → 0 requires factor risk premia to be non-trivially distributed across

factors. Note that, in the neural network interpretation above, this is essentially guaranteed

by the fact that the true underlying factor premia are distributed across characteristic-

managed portfolios through the Ξ matrix in (7). As a result of (15), the conditional

covariance matrix StΣF,tS
′
t + Σε of basic assets appearing in (11) drops out from the large

P limit. What is left to be estimated is the covariance matrix of factors, which is an

unconditional object and, thus, more tractable to estimate.

In summary, the key theoretical implication of Proposition 2 is that the complex

setting allows us to characterize the SDF by describing the unconditional portfolio of

factors and avoids the daunting problem of finding the conditionally optimal portfolio of

basic assets. Just as continuous time limits conveniently simplify a range of asset pricing

derivations, Proposition 2 shows the convenience of complexity for simplifying asset pricing

23For example, this is the case when λF ∈ N(0,Σλ/P ) for some bounded matrix Σλ. In this case,
E[λ′

FAλF ] = tr(E[AλFλ
′
F ]) = tr(AE[λFλ

′
F ]) = tr(AΣλ)/P ≤ tr(A)∥Σλ∥/P → 0.

24When Σε,t ̸= σtI, Proposition 2 still holds true if we redefine managed portfolios as Ft+1 = S′
tΣ

−1/2
ε,t Rt+1.
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model derivations by reducing conditional SDF estimation to an unconditional problem.

Equivalently, managed portfolios efficiently incorporate all conditional information in the

large P limit.25 Therefore, in the remaining theoretical development, we leave behind the

basic assets Rt and work directly with managed portfolios, Ft. Going forward, we refer to

Mt+1 = 1− λ′Ft+1 in (16) as the true SDF and analyze estimators of λ when P is large.

3 Properties of Machine Learning SDF Models

This section derives the theoretical behavior of complex asset pricing models in the envi-

ronment of Section 2. Throughout this section, we assume that the estimator is correctly

specified in the sense that the factors used by the econometrician, Ft, represent the true and

complete set of factors that enter linearly into the SDF, as in (16). On the one hand, the case

of a correctly specified SDF estimator is unrealistic because an econometrician cannot know

the true inputs to the SDF. However, the correctly specified setting is a useful starting point

for understanding the basic properties of high-dimensional SDF estimators. This provides a

foundation for our analysis of the more realistic and more interesting mis-specified setting

in Section 4.

3.1 Ridge Estimation for a Complex SDF

Our analysis centers on the ridge SDF estimator, defined as

λ̂(z) = λ̂(z;P ;T ) =
(
zI + Ê[FtF

′
t ]
)−1

Ê[Ft] = argmin
λ

{
T∑
t=1

(1− λ′Ft)
2 + z∥λ∥2

}
, (17)

25See, Appendix B for technical details.
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where Ê[Ft] =
1
T

∑
t Ft and Ê[FtF

′
t ] =

1
T

∑
t FtF

′
t are the sample mean and covariance of

factors. The corresponding ridge portfolio return and SDF are

R̂M
T+1(z;P ;T ) = λ̂(z)′FT+1, M̂T+1(z;P ;T ) = 1− R̂M

T+1(z;P ;T ). (18)

Britten-Jones (1999) points out that the population tangency portfolio of factors in (14) can

be viewed as the coefficient in a time series regression: minλE[(1− λ′Ft)
2]. Intuitively, this

regression finds the combination of the risky assets Ft that behaves as closely as possible to

a positive constant (in the ℓ2 sense), which is tantamount to finding the portfolio with the

highest Sharpe ratio. Kelly and Xiu (2023) dub this “maximum Sharpe ratio regression” (or

MSRR) and discuss its attractiveness for incorporating machine learning methods into SDF

estimation problems, such as the ridge estimator used here.

When z = 0 and P ≤ T, expression (17) is the OLS estimator of the SDF and is the

exact sample counterpart of (14):

λ̂(0) = Ê[FtF
′
t ]
−1Ê[Ft]. (19)

To equate the tangency portfolio of factors with the SDF per Proposition 2, we require a

high complexity model in which P → ∞. Yet when P is greater than the number of training

observations T , Ê[FtF
′
t ] is ill-defined, and the OLS regression has an infinite number of

solutions, all of which exactly fit the training data (delivering an excess return that is equal

to one in all periods).

We overcome the deficiency of Ê[FtF
′
t ] by introducing a ridge penalty into the regression

problem, shown in the second equality of (17). This augments the mean-variance efficient

portfolio of factors by shrinking the sample covariance to the identity matrix in proportion
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to the ridge parameter z, which has the effect of constraining the magnitude of λ.26 When

z > 0, the SDF solution λ̂(z) is unique and has a finite in-sample Sharpe ratio.

We may also interpret λ̂(z) in terms of “pricing errors” in the standard investor Euler

equation. Since the factors are tradable assets and Ft is in the space of excess returns, a

true SDF prices these with zero error due to the marginal investor’s first-order optimality

condition:

E[MtFt] = 0. (20)

Or, by substituting (16), we see the standard notion of pricing errors as the divergence

between expected factor returns and their riskiness:

E[Ft]− E[FtF
′
t ]λ = 0, (21)

which is exactly zero for the true SDF parameters λ. In other words, the population

regression solution (14) exactly prices all factors Ft. The deficiency of ordinary least squares

regression when P > T means an infinite number of SDF solutions price all factors with

exactly zero error in-sample. The ridge regression in (17) coincides with a “regularized Euler

equation” with the in-sample pricing errors proportional to factor risk prices:27

Ê[MtFt] = zλ̂(z). (22)

Amid high complexity (P > T ), ridge regularization provides a unique SDF solution whose

in-sample pricing errors are non-zero.

A particularly interesting case of the ridge SDF that we reference throughout is the

26Such ridge shrinkage belongs to the family of spectral shrinkage estimators of the covariance matrix that
only shrinks the empirical eigenvalues thereof. See, e.g., Kozak et al. (2020) and Ledoit and Wolf (2017) for
other spectral shrinkage estimators.

27Indeed, Ê[MtFt] = (I − (zI + Ê[FF ′])−1Ê[FF ′])Ê[Ft] = z(zI + Ê[FF ′])−1)Ê[Ft] = zλ̂(z) .
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ridgeless SDF estimator, defined as

λ̂(0+) = lim
z→0+

(
zI + Ê[FtF

′
t ]
)−1

Ê[Ft] = Ê[FtF
′
t ]
+Ê[Ft], (23)

where X+ denotes the Moore-Penrose pseudo-inverse of X. The infinitesimal penalty z → 0

means that the ridgeless SDF exactly fits the training data. Thus, it has an infinite in-sample

Sharpe ratio and zero pricing errors in-sample. But among all least squares solutions that

exactly fit the training data, λ̂(0+) is the solution with the smallest magnitude (the smallest

ℓ2 norm). This property is important in understanding complex SDF behavior, as discussed

below.

We also introduce the infeasible ridge SDF estimator

λ(z) = (zI + E[FF ′])−1E[F ] (24)

and its return and SDF,

RM
T+1(z) = λ(z)′FT+1, MT+1(z) = 1−RM

T+1(z). (25)

The formula (24) is a useful population counterpart to the ridge SDF estimator λ̂(z). While

λ̂(z) is a feasible portfolio that uses sample moments of the factors, the infeasible λ(z) relies

on the true means and covariances of factors. The special case λ = λ(0) corresponds to the

true SDF in (16). Naturally, as z increases from zero, the Sharpe ratio of RM
T+1(z) declines.

The portfolio λ(z) is an intermediate object between the true SDF λ(0) and the feasible

estimator λ̂(z) that will be useful for characterizing the properties of λ̂(z). Finally, we define

E(z) ≡ E[RM
T+1(z)] = E[F ]′(zI + E[FF ′])−1E[F ] ∈ (0, 1) , (26)
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and note that, by a direct calculation,

V(z) ≡ E[(RM
T+1(z))

2] =
d

dz
(zE(z)) . (27)

We will also need

R(z) ≡ E[(1−RM
T+1(z))

2] , (28)

the mean squared deviation of RM
T+1(z) from one.

3.2 The Ridge SDF and Random Matrix Theory

To characterize large P behavior of λ̂(z), we use asymptotic analysis that allows the number

of parameters P to grow with the number of observations T at a fixed rate (P/T → c > 0).

We refer to the ratio c as SDF complexity. In machine learning models, the number of

parameters is typically large (often much larger than the number of observations), so c≫ 0.

In this case, traditional large T asymptotic results such as the law of large number do not

hold and therefore

λ̂(z) =
(
zI + Ê[FtF

′
t ]
)−1

Ê[Ft] ̸≈ (zI + E[FF ′])−1E[F ] = λ(z). (29)

The central challenge to understanding the feasible SDF is the P × P matrix Ê[FtF
′
t ],

whose dimension grows with the number of SDF parameters. Such analysis requires the

apparatus of random matrix theory (RMT), on which we draw heavily to derive our results.

This approximates the SDF estimator’s behavior as we gradually increase the number of

parameters holding the amount of data fixed.

The eigenvalue distribution of the factor population covariance matrix, E[FF ′], deter-

mines the large P behavior of Ê[FtF
′
t ] via the Marčenko and Pastur (1967) theorem, a
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cornerstone of RMT. A key technical insight in our analysis is that, by incorporating a ridge

penalty in the SDF estimation problem per (17), we can connect λ̂(z) and the Marčenko and

Pastur (1967) theorem to characterize the SDF estimator when the number of parameters

is large. The eigenvalue distribution of E[FF ′] in the large P limit is summarized by the

Stieltjes transform

m(−z) = lim
P→∞

1

P
tr
(
(E[FtF

′
t ] + zI)−1

)
. (30)

Because of its high dimensionality, Ê[FtF
′
t ] converges not to E[FF

′] but to a distortion of it.

The Marčenko and Pastur (1967) theorem describes the nature of this distortion by relating

the limiting eigenvalue distribution of Ê[FtF
′
t ] to that of E[FF ′]. Theorem 10 in Appendix

C shows that the limit

m(−z; c) = lim
P→∞, P/T→c

1

P
tr

((
zI + Ê[FtF

′
t ]
)−1
)

(31)

exists, is non-random, withm(z; c) being the unique positive solution to the nonlinear master

equation

m(z; c) =
1

1 − c − c z m(z; c)
m

(
z

1 − c − c z m(z; c)

)
. (32)

Equation (32) linksm(−z; c) in (31) tom(−z) in (30). When complexity is small, c ≈ 0, (32)

implies m(z; c) ≈ m(z), as predicted by the standard law of large numbers. However, for

c > 0, the link between the empirical Stieltjes transform and the “true” Stieltjes transform

becomes very subtle. Formally, if one knows m(z), one can compute m(z; c) by solving the

implicit algebraic equation (32). However, in reality, m(z) is not observable, and we can

only perform our inference based on (31). It is possible to show that, when complexity is

high enough (e.g., c > 1), large parts of information about m(z) are lost in finite samples,
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and, hence m(z) cannot be recovered from m(z; c). A remarkable property of the theoretical

expressions derived in this paper is that they only depend on the empirically observable

m(z; c). Thus, the knowledge of the true Stieltjes transform is not needed for understanding

the properties of the SDF in the high complexity limit.

3.3 Expected Return of the Complex SDF

Our first result describes the expected return of the ridge SDF estimator in the high-

complexity regime.

Theorem 3 In the limit as P, T → ∞, P/T → c, the expected out-of-sample return of the

ridge SDF satisfies

limE
[
R̂M

T+1(z;P ;T )
]

= E(Z∗(z; c)), (33)

where A1 is defined in (26) and the function Z∗(z; c) is the “equivalent infeasible shrinkage”

given by

Z∗(z; c) = z (1 + ξ(z; c)) ∈ (z, z + c) , (34)

and where

ξ(z; c) =
c(1 − m(−z; c)z)

1− c(1 − m(−z; c)z)
. (35)

Furthermore, Z∗(z; c) is monotone increasing in z and c. In the ridgeless limit as z → 0, we

have

Z∗(z; c) →


0, c < 1

1/m̃(c), c > 1

(36)
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where m̃(c) > 0 is the unique positive solution to

c− 1 =

∫ dH(x)
m̃(1+m̃ x)∫ xdH(x)
1+m̃ x

, (37)

and H is the limiting eigenvalue distribution of E[FtF
′
t ].

Theorem 3 shows how complexity inhibits the performance of the SDF estimator. Intuitively,

the large number of parameters relative to the number of training observations limits the

estimator’s ability to learn the true parameters. When c > 0, there are too many parameters

and too few data points for the estimator to converge to its population counterpart. The

fascinating aspect of Theorem 3 is that we can explicitly characterize the severity of limits

to learning based on the eigenvalue distribution of the factor covariance matrix.

For a given choice of ridge parameter z, the cost of complexity can be described in terms

of the infeasible ridge portfolio’s return. At a complexity of zero, Z∗(z; 0) = z, and the

feasible SDF’s expected return converges to the infeasible expected return, E
[
λ̂(z)′RT+1

]
→

E[λ(z)′RT+1] = E(z). But holding z fixed, a rise in complexity to c > 0 raises Z∗(z, c)

and drives down the expected return of the SDF estimator. By how much? By the same

amount that the expected return drops when the infeasible portfolio’s shrinkage rises from

z to Z∗(z, c). In other words, the challenge of learning in a complex setting is equivalent

to knowing the true factor moments but being forced to use an unduly large shrinkage.

Remarkably, we can characterize Z∗(z; c) in closed form thanks to the expression (35) for

ξ(z; c) from RMT.

The monotonicity of Z∗(z; c) in z means that out-of-sample expected returns are highest

with minimal shrinkage. But even in the ridgeless limit when z → 0, Theorem 3 shows there

are limits to learning. In particular, there is an unavoidable reduction in expected return

because Z∗(z; c) is uniformly bounded away from zero in the high complexity regime (when

c > 1).
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3.3.1 Variance of the Complex SDF

Next, we analyze the role of complexity in determining the variance of the ridge SDF

estimator.

Theorem 4 In the limit as P, T → ∞, P/T → c, the expected out-of-sample second

moment of the return of the ridge SDF satisfies

limE[(R̂M
T+1(z;P ;T ))

2] = V(Z∗(z; c))︸ ︷︷ ︸
implicit shrinkage

+ G(z; c)R(Z∗(z; c))︸ ︷︷ ︸
complexity risk

, (38)

where V(z), R(z) are defined in (27), (28), and

G(z; c) =
d

dz
(zξ(z; c)) ∈ (0, cz−2] (39)

is monotone decreasing in z and increasing in c. Furthermore,

G(z; c) = M(z;Z∗(z; c)) , (40)

where

M(z;Z) = −1 +
Z

z + cϕ(Z)Z2
, ϕ(z) = P−1 tr(E[FF ′](zI + E[FF ′])−2) . (41)

The variance of the complex ridge SDF is characterized by two terms on the right side of

(38). The first term mirrors the behavior of the mean in Theorem 3. In the large P limit,

the SDF based on ridge parameter z has the same volatility as the infeasible portfolio with a

larger ridge parameter Z∗(z; c) > z. Rising complexity (holding z fixed) raises the infeasible

ridge portfolio’s effective complexity Z∗(z; c). In the high complexity regime (c > 1), SDF

volatility is therefore decreasing in complexity. In other words, higher complexity imposes

additional implicit shrinkage of the ridge SDF, above and beyond the explicit shrinkage z.
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Through this regularization, complexity reduces SDF variance and may improve the risk-

return tradeoff. Complexity generates this additional implicit shrinkage in an intuitive way.

Holding z fixed, if we increase P , we cannot raise ∥λ∥2 further due to the ridge penalty. By

adding more parameters, we can only continue to satisfy the ridge constraint by shrinking

the λ vector further.

While the rationale for the first term in (38) is qualitatively similar to Theorem 3, the

second term represents a different phenomenon that we call “complexity risk.” Complexity

risk can be thought of as sampling variation that exists even in the large T limit. It is

governed by the function G(z; c) that is independent of expected factor returns and only

depends on the eigenvalue distribution of E[FF ′]. When c = 0, there are infinitely more

observations than parameter parameters, so the SDF estimator λ̂(z) converges to a non-

random limit. As a result, G(z; 0) = 0, and there is no complexity risk. But when c > 0,

sampling variation survives even in the large T limit because the number of parameters

is too large to be accurately informed by the data. Complexity risk is a second-moment

manifestation of complexity-induced limits to learning.

3.3.2 Sharpe Ratio

Combining the preceding results, we can characterize the complex SDF’s limiting Sharpe

ratio. As usual, we use Var[X] = E[X2] − E[X]2 to denote the variance of a random

variable.

Theorem 5 Let

SR(z; c) = lim
P,T→∞,P/T→c

E[R̂M
T+1(z;P ;T )]

Var[(R̂M
T+1(z;P ;T ))

2]1/2
. (42)
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Then,

1

SR2(z; c)
= (1 +G(z; c))

1

SR2(Z∗(z; c); 0)
+ G(z; c)

(
1− E(Z∗(z; c))

E(Z∗(z; c))

)2

(43)

Theorem 5 implies that complexity always creates a gap between the feasible and

infeasible Sharpe ratios due to limits to learning. Since the infeasible Sharpe ratio, SR(z; 0),

is monotone decreasing in z, Theorem 5 shows how complexity affects the SDF Sharpe ratio

by both reducing out-of-sample SDF expected returns (through implicit regularization) and

raising out-of-sample SDF volatility (by introducing complexity risk).

The formula (43) implies a lower bound for limits to learning that depends only on the

eigenvalue distribution of the covariance matrix E[FF ′]:

SR2(z; c) ≤ SR2(Z∗(z; c); 0)

1 +G(z; c)
≤ SR2(z; 0)

1 +G(z; c)
. (44)

Thus, no matter how big the expected returns on the factors are, the Sharpe ratio will drop

by a factor of at least 1
1+G(z;c)

.

3.4 Complex SDF Pricing Errors

The fourth and last performance metric that we study quantifies the magnitude of pricing

errors for the SDF. In particular, we study the HJD (Hansen and Jagannathan, 1997) that

aggregates squared pricing errors of test assets weighted by the test assets’ inverse covariance

matrix.

The distinction between in-sample and out-of-sample performance is an essential ingre-

dient in the analysis of machine learning models (see, e.g. Martin and Nagel, 2021, for a

related discussion). Likewise, in the high complexity regime, exact details of computing the

out-of-sample HJD are important. We assume that the data sample is split into two sets:
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in-sample data indexed as t ∈ [1, T ] and out-of-sample data indexed as t ∈ (T +1, T +TOOS],

where TOOS is the number of out-of-sample periods.

Our analysis relies on the quantities

F̄OOS = EOOS[F ] ∈ RP , BOOS = EOOS[FF
′] ∈ RP×P (45)

where EOOS[X] = 1
TOOS

∑
t∈(T,T+TOOS ]

Xt denotes an out-of-sample time series average. The

pricing error properties of the SDF are particularly tractable to derive when the test assets

are the P factors Ft that underly the SDF. The out-of-sample pricing error vector is

EOOS(z;P ;T ) =
1

TOOS

∑
t∈(T,T+TOOS ]

FtM̂t(z;P ;T ) ∈ RP . (46)

Finally, following Hansen and Jagannathan (1997), we define the out-of-sample HJD as28

DHJ
OOS(z;P ;T ) = EOOS(z;P ;T )

′B+
OOS EOOS(z;P ;T ) , (47)

where B+
OOS is the Moore-Penrose quasi-inverse of the potentially degenerate matrix BOOS.

The following is true.

Proposition 6 We have

DHJ
OOS(z;P ;T ) − F̄ ′

OOSB
+
OOSF̄OOS = −2EOOS[R̂

M
t (z;P ;T )] + EOOS[(R̂

M
t (z;P ;T ))2]

(48)

28At first glance, it may not be obvious whether we should define the HJD weighting matrix as the in-
sample or out-of-sample second moment of factors. Upon further inspection, we find that the out-of-sample
second moment is preferable because it allows us to establish a direct correspondence between DHJ

OOS(z;P ;T )
and the out-of-sample SDF Sharpe ratio.
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When P > TOOS and both are sufficiently large, we have

F̄ ′
OOSB

+
OOSF̄OOS ≈ 1 (49)

and hence

DHJ
OOS(z;P ;T ) ≈ EOOS[(1− M̂t(z;P ;T ))

2] . (50)

In expectation, we have

lim
P,T,TOOS→∞, P/T→c, P>TOOS

E[DHJ
OOS(z;P ;T )] = (1 +G(z; c))R(Z∗(z; c)), (51)

Proposition 6 shows a surprising identity for expected out-of-sample pricing errors. The

high complexity error DHJ
OOS(z; c) is proportional to the infeasible error R(Z∗(z; c)), subject

to implicit regularization (i.e., z is replaced by Z∗(z; c)). The proportionality factor equals

one plus the complexity risk.

Perhaps surprisingly, the out-of-sample pricing error (51) does not always converge to

zero even when c = z = 0. Instead,

lim
P,T,TOOS→∞, P/T→0

E[DHJ
OOS(0;P ;T )] → limE[F̄ ′

OOSB
+
OOSF̄OOS] − E[F ]E[FF ′]−1E[F ] . (52)

Note that E[F ]E[FF ′]−1E[F ] = E(0) is the expected return on the efficient portfolio, whereas

E[F̄ ′
OOSB

+
OOSF̄OOS] can be computed based on the following result.

Lemma 1 We have

limE[F̄ ′
OOS(zI +BOOS)

−1F̄OOS] =
E(Z∗(z; cOOS)) + ξ(z; c)

1 + ξ(z; c)
. (53)
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In the ridgeless limit,

limE[F̄ ′
OOSB

+
OOSF̄OOS] =


E(0)(1− cOOS) + cOOS, cOOS < 1

1, cOOS ≥ 1 ,

(54)

and, hence,

lim
P,T,TOOS→∞, P/T→0

E[DHJ
OOS(0;P ;T )] →


cOOS(1− E(0)), cOOS < 1

1− E(0), cOOS ≥ 1 .

(55)

The pricing error (55) remains strictly positive as long as cOOS > 0. Only when c = 0 do

we recover the true SDF in the large T limit, so it must price all assets without error. In this

case, because the test assets (Ft) are the same factors that underly the SDF, the factors are

essentially trying to “price themselves.” However, when cOOS > 0, the out-of-sample factor

moments (F̄OOS, BOOS) are so severely misestimated that DHJ
OOS(0;P ;T ) does not converge

to zero even if we have learned the true SDF in training.

Finally, we can relate the out-of-sample HJD to the out-of-sample Sharpe ratio. Consider

a scale parameter α such that

M̂t(z;P ;T ) = 1− α R̂M
t (z;P ;T ). (56)

Then (50) implies that the optimal α is α = EOOS[R̂
M
t (z;P ;T )]/EOOS[(R̂

M
t (z;P ;T ))2], and

we get

DHJ
OOS(z;P ;T ) = F̄ ′

OOSB
+
OOSF̄OOS − SR2

OOS(R̂
M(z;P ;T )). (57)

Thus, the larger the out-of-sample Sharpe ratio, the lower the out-of-sample pricing error.

Pricing errors are minimized when the complex feasible ridge SDF achieves the same out-
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of-sample Sharpe ratio as the ex-post out-of-sample tangency portfolio of factors. This is, in

essence, an out-of-sample counterpart to the Gibbons et al. (1989) statistic.

4 Mis-specified SDF Models and the Virtue of Complexity

So far, we have implicitly assumed a correctly specified model for the SDF. KMZ point out

that model complexity comparative statics are of limited use in the theoretical setting of

correctly specified models because, as model complexity varies, the complexity of both the

empirical model and the true model are changing. As a result, comparative statics involving

model complexity cannot be taken to the data.

Instead, they argue that the more interesting theoretical case to consider is one that

varies the complexity of a mis-specified empirical model while holding the true DGP fixed.

The practical motivation for this approach is that, as the empirical machine learning model

becomes more complex, its ability to approximate the truth improves, and the degree of

mis-specification lessens.

In this section, we develop the theory for this more realistic mis-specified environment.

In particular, we assume only a fraction q = P1

P
< 1 of factors are observable. The subset of

factors, Ft+1(q) = (Fi,t+1)
P1
i=1, has a covariance matrix E[Ft(q)Ft(q)

′] ∈ RP1×P1 . As in KMZ,

we consider a case where the true number of factors P is large, and the ordering of factors

is irrelevant. We are interested in characterizing SDF behavior as P1 varies and approaches

P from below (when P1 = P , the model is correctly specified).

Our analysis of the estimator and its theoretical properties mirrors that of the correctly

specified estimator in Section 3. In particular, the complex SDF parameter estimates are

λ̂(z;P1;T ) = (zI + Ê[Ft(q)Ft(q)
′])−1Ê[Ft(q)] (58)
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with corresponding portfolio return and SDF of

R̂M
T+1(z;P1;T ) = λ̂(z;P1;T )

′FT+1(q), M̂T+1(z;P1;T ) = 1− R̂M
T+1(z;P1;T ).

We also define the analog of the infeasible ridge SDF estimator (24) for the mis-specified

case:

λ(z; q) = (zI + E[F (q)F (q)′])−1E[F (q)] (59)

and its return and SDF,

RM
T+1(z; q) = λ(z; q)′FT+1, MT+1(z; q) = 1−RM

T+1(z; q).

From the infeasible estimator, we define the analogs of functions (26) through (28):

E(z; q) = E[RM
T+1(z; q)] = E[F (q)]′(zI + E[F (q)F (q)′])−1E[F (q)]

V(z; q) = E[(RM
T+1(z; q))

2] =
d

dz
(zE(z; q))

R(z; q) = E[(1−RM
T+1(z; q))

2] .

(60)

Next, we require analogues of the m, Z∗, ξ, and G functions that depend on the degree

of mis-specification, q:

m(−z; cq; q) = lim
P1→∞, P1/T→cq

1

P1

tr

((
zI + Ê[Ft(q)Ft(q)

′]
)−1
)

ξ(z; cq) =
cq(1 − m(−z; cq; q)z)

1− cq(1 − m(−z; cq; q)z)

Z∗(z; cq; q) = z (1 + ξ(z; cq; q) ∈ (z, z + cq)

G(z; cq; q) = (zξ(z; cq; q))′ ∈ (0, cqz−2].

(61)
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The complexity of the mis-specified model is cq = P1/T. As q increases, so does cq, and,

hence, the impact of complexity on portfolio performance is also determined by cq ∈ (0, c).

Finally, we define the out-of-sample pricing errors and HJD under mis-specification as

EOOS(z; q;P ;T ) =
1

TOOS

∑
t∈(T,T+TOOS ]

FtM̂t(z; q) ∈ RP

DHJ
OOS(z; q;P ;T ) = EOOS(z; q;P ;T )

′B+
OOS EOOS(z; q;P ;T ) .

Note that EOOS(z; q;P ;T ) ∈ RP and B+
OOS ∈ RP while Ft(q) ∈ RP1 . In other words, the

mis-specified SDF attempts to price all P factors using only a subset of P1 factors.

We can now state our main theoretical results for the mis-specified case.

Theorem 7 In the limit as P1, T → ∞, P1/T → cq, the expected out-of-sample moments

of the ridge SDF portfolio satisfy

i. limE[R̂M
T+1(z;P1;T )] = E(Z∗(z; cq; q); q)

ii. limE[(R̂M
T+1(z;P1;T ))

2] = V(Z∗(z; cq; q); q) + G(z; cq; q)R(Z∗(z; cq; q); q)

iii.
1

SR2(z; cq; q)
=

1

S(z;Z∗(z; cq; q); q)
, where

1

S(z;Z; q)
= (1 +M(z;Z, q))

1

SR2(Z; 0; q)
+ M(z;Z, q)

(
1− E(Z; q)
E(Z; q)

)2

iv. limE[DHJ
OOS(z; q;P ;T )] = −(1− E(0; 1))max(1− cOOS, 0) + D(z;Z∗(z; cq; q); q), where

D(z;Z; q) = (1 +M(z;Z, q))R(Z; q).

(62)

4.1 The Virtue of Complexity

Theorem 7 is the foundation for understanding the virtue of complexity in SDF models.

In this section, we attempt to draw out the intuition behind the theorem to understand

the behavior of complex SDFs. To aid our discussion, Figure 1 plots the “VoC curves”
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(a) Expected Return (b) Second Moment

(c) Sharpe Ratio (d) Pricing Error

Figure 1: Expected Out-of-sample Performance of Mis-specified Complex SDF Models

Note. Limiting out-of-sample mean, variance, Sharpe ratio, and pricing error (HJD) of the SDF as a
function of c, q and z from Theorem 7 assuming Ψ is the identity matrix and λ ∼ N(0, I).

to illustrate the effect of model complexity on SDF behavior. Each curve corresponds to

a different choice of ridge penalty z, and each point on a curve corresponds to a different

number of model parameters P1. VoC curves show how the complexity of the empirical model

(on the x-axis) affects the expected out-of-sample mean, variance, and Sharpe of the SDF

portfolio and the SDF’s expected out-of-sample pricing errors. In Figure 1, these moments

are calculated from the random matrix theoretical limits in Theorem 7 with calibration
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choices of Ψ = I and λ ∼ N(0, I). We set the true complexity c = P/T equals 10, and we

gradually increase the fraction of observable factors q = P1/P .

Panel (a) shows that the out-of-sample expected return of the SDF portfolio is increasing

in model complexity. The intuition for this result is that higher model complexity allows the

SDF model to approximate the unknown true SDF more accurately. As the approximation

improves and specification error shrinks, the estimated SDF is able to achieve a higher

expected portfolio return. This is true for all ridge penalty levels and throughout the full

range of complexity. Expected return curves are flatter with higher shrinkage, z. This is

because more shrinkage increases the estimator’s bias, reducing the approximating power of

the SDF, which eats into its returns.

In Panel (b), SDF volatility is highly sensitive to model complexity, a point critical to

understanding the broader behavior of complex SDF models. When the complexity of the

empirical model (cq) approaches unity, the variance of the ridgeless SDF spikes. The logic

for this behavior follows from arguments in KMZ. For cq → 1, the unregularized sample

covariance matrix of factors becomes unstable, and because λ̂(0) relies on the unregularized

inverse of this covariance, the estimator’s variance explodes. Intuitively, when cq = 1, the

number of model parameters equals the number of time series observations, so there is a

unique estimator that fits every data point with zero error. Without regularization, this

estimator is badly overfitting and produces disastrous out-of-sample behavior.

When cq ≫ 1 the ridgeless estimator limz→0 λ̂(z) is the unique estimator that exactly

fits the training data while maintaining the smallest ℓ2 norm. Thus, the ridgeless estimator

implicitly regularizes the SDF, leading to low SDF volatility in the high-complexity regime.

As the other curves in Panel (b) show, SDF volatility can also be controlled by raising the

explicit ridge shrinkage, z. This is the low variance benefit of the shrinkage-induced bias.

The out-of-sample SDF Sharpe ratio is shown in Panel (c). The ridgeless SDF estimator

demonstrates “double ascent,” in analogy to the “double descent” MSE phenomenon studied
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in statistics literature.29 At low complexity (cq ≪ 1), the Sharpe ratio rises with complexity

as larger models show improved approximation power benefits. But near cq = 1, the Sharpe

ratio collapses to zero due to the explosion in SDF variance. Finally, at high complexity

(cq ≫ 1), variance comes under control, and the benefits of improved approximation again

dominate and lead to an increasing Sharpe ratio. Panel (c) also demonstrates that, with

appropriate explicit shrinkage z, the complex SDF estimator exhibits “permanent ascent”

with an increasing Sharpe ratio throughout the full range of complexity.30

Finally, Panel (d) illustrates the behavior of out-of-sample SDF pricing errors (HJD)

as a function of complexity. As shown by the inverse association between the HJD and

Sharpe ratio in (57), the pricing errors in Panel (d) mirror the patterns for the Sharpe

ratio in Panel (c). The more complex the SDF, the better its ability to price all factors

Ft out-of-sample. As long as the number of true factors (P ) is large, these pricing errors

never go to zero, even for very high-complexity empirical models. Higher complexity means

that the empirical SDF includes more true factors, improving its pricing ability. But at the

same time, higher complexity also means more stringent limits to learning (we cannot learn

parameters accurately due to the dearth of data), and as a result, out-of-sample pricing

errors are bounded away from zero (this is true even for high complexity models that are

correctly specified).

A fascinating consequence of the pricing error result in part (iv) of Theorem 7 is

the fact that out-of-sample pricing errors are independent of the set of test assets when

cOOS > 1.As an illustration, consider an SDF model that only involves P1 factors F1, · · · , FP1 ,

29See, for example, (Spigler et al., 2019; Belkin et al., 2018, 2019, 2020; Bartlett et al., 2020).
30Another way to understand how complexity benefits the SDF Sharpe ratio is by examining the estimation

problem directly:

min
λ∈RP1

{E[(1− λ′Ft(q))
2] + z∥λ∥2} = 1 − E(z; q) .

As P1 = qP increases, the objective is optimized over a larger subset of factors. Hence, the expected
SDF return, E(z; q), is monotone increasing in q. When z is small, the effect of penalization is negligible,
and SR(z; 0; q) = E[RM

T+1(z; q)]/(E[(RM
T+1(z; q))

2]1/2 is also monotone increasing, reflecting the larger
diversification possibilities when more factors are used.
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and let F1, · · · , FP1 , FP1+1, · · · , FP be the set of test assets, containing F1, · · · , FP1 .
31 As

is emphasized in the literature (e.g. Gagliardini and Ronchetti, 2020), computing the

conditional HJD requires using all possible managed portfolios in the set of test assets.

Theorem 7 implies that complexity imposes an inherent limit on what may be inferred with

a limited amount of out-of-sample test data (aka “limits-to-testing”). Effectively, increasing

the number of priced assets beyond the number of test periods has no impact on the pricing

errors. When cOOS > 1, it does not even matter which assets we try to price. The pricing

errors only depend on the properties of the SDF itself (i.e., properties of F1, · · · , FP1) and

not the properties of the test asset set!

To best illustrate the virtue of SDF complexity, the plots in Figure 1 are calculated from

our random matrix theory derivations in a specific calibration. However, the virtue of SDF

complexity holds more generally, as stated in the next result.

Theorem 8 (The Virtue of Complexity) Suppose that ∂
∂q
S(z;Z; q) is sufficiently large

relative to ∂
∂Z

S(z;Z; q). Then, the OOS Sharpe ratio is monotone increasing in q. Next,

suppose that ∂
∂q
D(z;Z; q) is sufficiently large relative to ∂

∂Z
D(z;Z; q). Then, HJD is monotone

decreasing in q.

To understand the virtue of complexity, consider the formula

limE[DHJ
OOS(z; q;P ;T )] = D(z;Z∗(z; cq); q), (63)

where, by Theorem 7,

D(z;Z; q) = (1 +M(z;Z; q))R(Z; q) . (64)

Complexity defines a tradeoff between the ability of the model to approximate the truth

and the estimation risk due to complexity. A larger model leads to better-diversified factor

31Formally, we just need to make sure that all F1, · · · , FP1
belong to the span of the test assets.
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portfolios, and, as a result, R(Z; q) is monotone, decreasing in q. At the same time, larger

q leads to stronger implicit regularization, pushing Z∗ up and, hence, higher R(Z∗; q). A

similar mechanism pushes M(z;Z; q) up because a larger q increases complexity risk. The

tradeoff is then determined by

d

dq
D(z;Z∗(z; cq; q); q) =

∂

∂Z
D(z;Z∗(z; cq; q); q)

d

dq
Z∗(z; cq; q) +

∂

∂q
D(z;Z∗(z; cq; q); q) (65)

When the marginal diversification benefit ∂
∂q
D > 0 is large enough relative to the loss due

to implicit regularization, ∂
∂Z

D, we obtain the virtue of complexity.32

5 Empirics

In this section, we empirically investigate the effect of model complexity on out-of-sample

SDF behavior. We develop direct empirical analogs to the theoretical comparative statics

for mis-specified models in Section 4.

5.1 Data

To make the conclusions from this analysis as easy to digest as possible, we perform our

analysis in a conventional setting with conventional data. We thus focus our analysis on

a standard empirical problem in asset pricing: estimating the SDF from US stock returns

32As an illustration, consider the simple case of uncorrelated factors so that Cov(F ) = I and suppose that
risk premia are uniformly distributed across factors. Then,

E(z; q) =
q

1 + z + q

V(z; q) =
q + q2

(1 + z + q)2

R(z; q) =
1 + z2 + q

(1 + z + q)2

1 +M(z;Z; q) =
Z

z + cq Z2

(1+Z)2

,

(66)

while Z∗ can be computed using RMT.
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at monthly frequency (see Lettau and Pelger (2020); Kozak et al. (2020)). In addition to

stock returns, we require data on the conditioning variables, Xt, that determine conditional

stock-level weights in the SDF portfolio, as in equation (1). For this, we use the data set

constructed in Jensen et al. (Forthcoming) (JKP henceforth), which is a comprehensive

and standardized collection of stock-level return predictors from the finance literature.33 It

includes monthly observations of 153 characteristics for each stock from 1963 to 2019. The

JKP universe includes NYSE/AMEX/NASDAQ securities with CRSP share code 10, 11,

or 12, excluding “nano” stock as classified by JKP (i.e., stocks with market capitalization

below the first percentile of NYSE stocks).

Some of the JKP characteristics have low coverage, especially in the early parts of the

sample. To ensure that characteristic composition is fairly homogeneous over time and to

avoid purging a large number of stock-month observations due to missing data, we reduce the

153 characteristics to a smaller set of 130 characteristics with the fewest missing values.34.

We drop stock-month observations for which more than 30% of the 130 characteristic values

are missing and use Nt to denote the number of the remaining stock observations at time t.

Next, we cross-sectionally rank-standardize each characteristic and map it to the [−0.5, 0.5]

interval, following Gu et al. (2020b). Ultimately, we obtain a panel of characteristics Xt =

(Xi,k,t)i,k ∈ RNt×d.

5.2 Empirical Design

Following our theoretical development, our empirical analysis pursues an SDF of the form

Mt+1 = 1− λFt+1 = 1− λ′S ′
tRt+1 ≈ 1− w(Xt)

′Rt+1

33The JKP stock-level data are accessible at https://wrds-www.wharton.upenn.edu/pages/get-data/
contributed-data-forms/global-factor-data/.

34To mitigate concerns that our empirical findings are dependent on high-turnover characteristics, we rerun
our main experiments while further restricting the predictor set to d = 110 by removing the 20 characteristics
with the highest turnover. This helps alleviate concerns that the complexity effects that we document are
artifacts of limits-to-arbitrage arising from trading costs (see the related critiques of Jensen et al., 2022;
Avramov et al., 2023) We present the results in Appendix M.
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as in equations (10) and (16). The factors Ft+1 = S ′
tRt+1 are a set of P characteristic-

managed portfolios, one for each of the P characteristics in the N × P matrix St.

The genesis of St is critical for linking the empirical analysis to our theory. We define St as

nonlinear basis functions of the raw predictors Xt such that Stλ is a generic nonparametric

approximator of w(Xt). To evaluate the complexity comparative statics implied by our

theory, we require a framework that allows us to smoothly transition from low complexity

(P ≪ T ) to high complexity (P ≫ T ) models holding the underlying information set fixed.

Following KMZ, we accomplish this using the machine learning method of random Fourier

features, or RFF (Rahimi and Recht, 2007). RFF converts the 130 original signals Xt into

a pair of new signals

Si,t ∈ RNt×2 = [sin(γXtωi), cos(γXtωi)]
′ , ωi ∼ i.i.d. N(0, I). (67)

Si,t is a random linear combination (ωi) of the raw characteristics Xt fed through the

trigonometric activation functions. RFF is an ideal tool for our analysis because it uses

a fixed set of input data, Xt, to create a set of features with any desired dimension P . For a

low-dimensional model of, say, P = 2, one generates a single pair of RFFs. For a very high-

dimensional model of, say P = 10,000, one can instead draw many random weight vectors

ωi, i = 1, ..., 5,000. The larger the number of random features, the richer the approximation

Stλ provides to the true SDF weight function w(Xt). The RFF approach is a wide two-layer

neural network with fixed weights in the first layer (in the form of ωi) and optimized weights

in the second layer (in the form of least squares estimates of λ).35

We construct empirical VoC curves by varying the dimension of St from P =

1, ..., 1,000,000 and considering a grid of ridge penalties z ∈ {10n | n ∈ {−12, . . . , 3}} . For

35The parameter γ controls the Gaussian kernel bandwidth in generating random Fourier features.
Following Kelly et al. (2022), we randomly choose γ from the grid [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] for each ωi that
we generate. This embeds varying degrees of nonlinearity in the generated feature set St. For each nonlinear
feature that we generate, we again cross-sectionally rank-standardize it to lie in the [-0.5,0.5] interval. Finally,
because the size of the cross-section varies over time, our empirical analysis uses Ft+1 = 1

N
1/2
t

R′
t+1St ∈ RP .
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each model of size P with ridge penalty z, we conduct a rolling out-of-sample SDF model

performance analysis. Starting in January 1993, on each date t we use the most recent 360

months of data to estimate the ridge SDF in (17).36 We then track the out-of-sample SDF

portfolio return in the subsequent month. From the sequence of monthly out-of-sample SDF

realizations, we then calculate the realized out-of-sample SDF expected return, variance,

Sharpe ratio, and HJD.37

5.3 Main Results

Our main analysis uses the full JKP data set described above. We plot the empirical

VoC curves in Figure 2. The first and central conclusion of our analysis is that the data

demonstrates the virtue of complexity predicted by out theory. As we increase the number

of factors in our empirical SDF model we find that i) the average SDF return rises, ii) SDF

volatility spikes as P approaches T and decreases monotonically thereafter, iii) the SDF

Sharpe ratio exhibits double ascent for low ridge penalties and permanent ascent for higher

penalties, and iv) pricing error patterns are the inverse of those for Sharpe ratio and are

generally decreasing with complexity. In short, increasing the number of factors enhances

the out-of-sample performance of factor SDF models.

The second conclusion from Figure 2 is that complexity benefits are large in magnitude.

Low complexity SDF models deliver Sharpe ratios on the order of 0.5 to 1.5, while the

highest complexity SDFs that we consider achieve Sharpe ratios near 4.0. Likewise, complex

SDFs are much better situated to price our demanding set of test assets (one million

36The stochastic nature of RFF means that there is inherent variability in the estimated SDF model,
particularly when P is small. To mitigate this variability, we repeat the RFF-based estimation 20 times and
ensemble the SDF parameter estimates in an equally weighted average. See KMZ for further discussion of
this point.

37When calculating the HJD for an SDF model of dimension P , we use the entire set of 1,000,000 factors
as test assets. So, when P = 1,000,000, the set of factors underlying the SDF exactly coincides with the set
of test assets.
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(a) Expected Return (b) Second Moment

(c) Sharpe Ratio (d) Pricing Error

Figure 2: Out-of-sample Performance of Complex SDF Models

Note. Realized out-of-sample SDF portfolio average return, second moment, Sharpe ratio, and pricing
error (HJD). The horizontal axis shows model complexity c = P/T , with P ranging from 2 to 1,000,000
and T = 360 months. Factors underlying the SDF are characteristic-managed portfolios constructed with
random Fourier features derived from JKP stock characteristics.

nonlinear characteristic-managed portfolios). From the out-of-sample HJD, we see that high

complexity SDFs reduce pricing errors by a factor of six relative to low complexity models.

To further benchmark magnitudes, the figures report out-of-sample performance of the

Fama-French six-factor SDF (including momentum and denoted “FF6”). Specifically, we use

the MKT , HML, SMB, RMW , CMA, and MOM factors from Ken French’s website and

construct the out-of-sample FF6 SDF as the rolling 360-month six-factor tangency portfolio.
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From this, we calculate the same out-of-sample SDF performance metrics used for complex

portfolios. The out-of-sample FF6 Sharpe ratio is 1.1. While this is in line with the other

low complexity models, it is nonetheless an impressive feat. The FF6 SDF achieves its

performance with a much smaller information set than the 130 characteristics flowing into the

low complexity RFF models. Nonetheless, this falls far short of the Sharpe ratios delivered

by high complexity models.38

5.4 Results By Market Capitalization

A Sharpe ratio hovering near 4.0 for high complexity SDF models is an indication that the

model is likely picking up inefficiencies associated with illiquidity. To understand the role of

complexity in factor pricing models while abstracting from the question of asset liquidity, we

perform our empirical experiments separately for different market capitalization groups. We

study four stock groups from JKP: mega (largest 20% of stocks based on NYSE breakpoints

each period), large (between 80% and 50%), small (between 50% and 20%), and micro

(between 20% and 1%).

Figure 3 plots out-of-sample Sharpe ratio VoC curves for SDFs estimated separately

within each size group, and Figure 4 plots pricing errors. The main conclusion from the

figure is that the virtue of complexity conforms to our theory predictions in all stock size

groups. This means that the patterns in Figure 2 are not driven by illiquidity and limits-to-

arbitrage among the underlying assets. Instead, the virtue of complexity reflects that models

with a large number of factors are better suited to price assets in the cross section.

In terms of magnitudes, Figure 3 reveals that the high SDF Sharpe ratios in Figure 2 are

indeed driven by micro capitalization stocks. While complex SDFs built from micro stocks

achieve a Sharpe ratio near 4.0, the SDF Sharpe ratios based on mega or large stocks are

38When building the FF6 tangency portfolio we do not use ridge shrinkage because the number of assets
is far smaller than the number of time series observations. Even with ex post optimal ridge shrinkage in the
FF6 tangency calculation, the resulting out-of-sample SDF portfolio Sharpe increases only negligibly from
1.06 to 1.13.
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(a) Mega (b) Large

(c) Small (d) Micro

Figure 3: Out-of-sample Sharpe Ratios of Complex SDF Models By Size Group

Note. Realized out-of-sample SDF Sharpe ratio in subsamples based on market capitalization. The
horizontal axis shows model complexity c = P/T , with P ranging from 2 to 1,000,000 and T = 360 months.

on the order of 1.7. Nonetheless, it is impressive that a complex factor model derived from

mega stocks alone (roughly the 400 largest stocks in the US) produces an out-of-sample SDF

Sharpe ratio well in excess of the FF6 model’s Sharpe ratio of 1.1 (which uses the full cross

section of stocks).

5.5 The Nonlinear Fama-French Model

In the preceding analysis, we compare high complexity models derived from 130 signals to the

FF6 model, which is a low complexity model derived from a small set of signals. Naturally,
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(a) Mega (b) Large

(c) Small (d) Micro

Figure 4: Out-of-sample Pricing Errors of Complex SDF Models By Size Group

Note. Realized out-of-sample SDF pricing error (HJD) in subsamples based on market capitalization. The
horizontal axis shows model complexity c = P/T , with P ranging from 2 to 1,000,000 and T = 360 months.
In each subsample, the test assets are a set of 1,000,000 factor portfolios managed on the basis of nonlinear
random Fourier features. Like the SDF, the test assets are constructed from stocks within a given subsample,
which is why the FF6 pricing error varies across the four panels.

one may wonder what the benefits of complexity are if we restrict the raw data inputs to

those used by Fama-French. To investigate this, we construct complex SDFs using random

features derived from only the five characteristics that underly the FF6 model. Each of these

complex models is a reformulation of Fama-French that employs a large number of factors

based on nonlinear transformations of size, value, investment, profitability, and momentum

characteristics.
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(a) Sharpe Ratio (b) Pricing Error

Figure 5: Nonlinear Fama-French Model Performance

Note. Realized out-of-sample SDF Sharpe ratio and pricing error (HJD). The horizontal axis shows model
complexity c = P/T , with P ranging from 2 to 1,000,000 and T = 360 months. In each subsample, the test
assets are a set of 1,000,000 factor portfolios managed on the basis of nonlinear random Fourier features.
Factors underlying the SDF are characteristic-managed portfolios constructed with random Fourier features
derived from the five characteristics underlying the FF6 model: size, value, investment, profitability, and
momentum. For ease of reference, “Best Complex Model” shows the best performing complex model from
Figure 2 that uses all JKP stock characteristics.

Figure 5 reports the performance on nonlinear Fama-French models with varying degrees

of complexity and shrinkage, and compares it to the baseline FF6 model. By allowing for

nonlinearity in the SDF, high complexity Fama-French models achieve Sharpe ratios over

2.2, doubling that of the baseline FF6 model, and Fama-French pricing errors drop by more

than half thanks to complexity.

The key conclusion from this analysis is that the benefits of SDF complexity accrue

even when starting from a small conditioning information set. Complexity uses any set of

conditioning variables in a flexible manner to more fully express their nonlinear impact.
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5.6 SDF Complexity or SDF Sparsity?

A recent spate of financial machine learning research suggests that it is possible to estimate

a successful SDF through the imposition of sparsity.39 The evidence indicates that an SDF

model with a small number of factors can successfully price a wide variety of test assets.

This is exemplified by Kozak et al. (2018). They study a collection of difficult-to-price

anomaly portfolios which serve as their test assets. They then show that a simple linear

SDF—comprised of just few principal components of the anomaly portfolios—is powerful for

pricing their entire anomaly cross section.

The notion of SDF sparsity appears at odds with the benefits of SDF complexity that we

document above. While our results thus far demonstrate that a complex SDF can identify

some effective nonlinear pricing factors, is it possible that we also introduce unnecessary

redundancy by using many thousands of factors? We investigate this possibility now.

In our main Figure 2, each point on each curve is a model with a particular number of

factors, P , and a particular shrinkage parameter, z. To understand the potential benefits of

SDF sparsity, for each SDF model in Figure 2 we fits P nonlinear factors to a small number

K of their principal components. We then estimate the ridge SDF from these K components

and track the resulting out-of-sample SDF performance.

Figure 6 reports the results. In the left column, we consider a K = 5 component

dimension reduction of each complex factor model, while the right column shows a reduction

to K = 25 components. The top row reports out-of-sample SDF Sharpe ratios, and the

bottom row reports pricing errors. As a frame of reference, the dotted lines in each plot show

the performance of the highest complexity SDF in Figure 2 without dimension reduction.

The main conclusion from Figure 6 is that imposing sparsity on the SDF via a principal

components dimension reduction inhibits SDF performance relative to the unreduced, high-

complexity counterpart. When K = 5, the Sharpe ratio of the dimension-reduced SDF is

39This includes Gagliardini et al. (2016), Kelly et al. (2020), Kozak et al. (2020), Lettau and Pelger (2020),
and Giglio and Xiu (2021), among others.
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K = 5 K = 25

Figure 6: The Effect of Sparsity on Out-of-sample SDF Performance

Note. Realized out-of-sample SDF Sharpe ratio (top row) and pricing error (HJD, bottom row) for complex
models with dimension reduction to K = 5 (left column) and K = 25 (right column) principal components.
The horizontal axis shows model complexity c = P/T in log scale, with P ranging from 2 to 1,000,000 and
T = 360 months. For ease of reference, “Best Complex Model” shows the best performing complex model
from Figure 2 that uses all factors without dimension reduction.

roughly 1.2, compared to 4.0 for the full complexity model. Likewise, pricing errors are 0.39

for the K = 5 SDF versus 0.07 for the full complexity model.

Two important properties of high-dimensional models drive this effect. First, even if

the true (unobservable) factor covariance matrix has a few large eigenvalues and, hence, a

strong factor structure, the factors become impossible to detect with enough complexity.40

Second and more surprisingly, even low-variance components have a significant Sharpe ratio;

40See, e.g., Lettau and Pelger (2020).
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T = 12 T = 60 T = 120

Figure 7: The Effect of Training Sample Size on Out-of-sample SDF Performance

Note. Realized out-of-sample SDF pricing error (HJD) for different training window sizes of T = 12, 60,
and 120 months. The horizontal axis shows model complexity c = P/T , with P ranging from 2 to 1,000,000.

hence, dropping them leads to a drop in out-of-sample SDF performance. Thus, we should

include all components in the SDF portfolio. While this seems counter-intuitive from the

point of view of arbitrage pricing theory, the high Sharpe ratios of low-variance components

are impossible to realize on a standalone basis because these components are so difficult to

estimate.

5.7 Sensitivity to Sample Size

Our main analysis demonstrates the virtue of complexity when estimation is conducted

in a rolling 360-month training sample. However, the benefits of complexity can accrue

in much smaller training samples. In Figure 7 we plot VoC curves for training sample

samples of T = 12, 60 and 120 months. We find identical patterns in SDF behavior as a

function of complexity in training windows as short as a single year. However, for shorter
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training windows, SDF model performance weakens. The highest out-of-sample Sharpe ratio

for a complex SDF is roughly 2.0, 3.1, 3.6, and 4.0 for T = 12, 60, 120, and 360 months,

respectively. Likewise, pricing errors reduce from roughly 0.38 for T = 12 months to 0.07

for T = 360.

6 Conclusion

In this paper we develop a theory of machine learning SDF estimators founded on the

concept of statistical model complexity. Among our key theoretical findings is the virtue of

SDF complexity. In essence, out-of-sample performance of factor pricing models (both in

terms of SDF Sharpe ratio and test asset pricing errors) generally improves with the number

of factors. We also characterize the limits to learning that arise from application of highly

parameterized prediction models amid relative data scarcity. While heavy parameterization

precludes consistent estimation of the SDF, the virtue of complexity arises from the improved

approximation power of complex models overwhelming the countervailing effect of limits to

learning.

Using monthly US stock data, we document an empirical virtue of complexity that bears

a strikingly close resemblance to the predictions of our theory. The most successful factor

models that we study are those with the very largest number of factors—as many as one

million factors in our implementation, with each factor constructed as a managed portfolio

whose weights are nonlinear functions of conditioning characteristics. Indeed, we find non-

trivial benefits of introducing additional factors even after controlling for several thousand

other factors. Relatedly, we show that principal components of our high-dimensional factor

sets are incapable of delivering the same caliber of out-of-sample SDF performance that we

observe for the complex SDF built from the full set of factors.
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A Properties of the Infeasible Portfolio

By a direct calculation,41

λ = E[FF ′]−1E[F ] =
1

1 +MaxSR2
Var[F ]−1E[F ] , (68)

where Var[F ] is the covariance matrix of factors and where we have defined

MaxSR2 = E[F ]′Var[F ]−1E[F ] (69)

to be the maximal achievable unconditional squared Sharpe ratio. Most existing papers

perform their analysis assuming that the population moments of the factors are directly

observable and, hence, so is the vector of factor risk premia, λ. The corresponding portfolio

satisfies

E[λ′Ft+1] = E[(λ′Ft+1)
2] = E[F ]′E[FF ′]−1E[F ] =

MaxSR2

1 +MaxSR2
. (70)

It will be instructive for our subsequent analysis to decompose the maximal Sharpe ratio

into the contributions coming from the factor principal components. Given the eigenvalue

decomposition Var[F ] = U diag(µ)U ′, we can define PCi to be the i-th column of U ′F . In

the sequel, we will use

θ = U ′E[F ] (71)

41See the Sherman-Morrison formula (80).
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to denote the vector of mean returns of the PCs. Then, we can rewrite the maximal Sharpe

ratio (69) as

MaxSR2 =
∑
i

θ2i
µi

=
∑
i

(SR(PCi))
2 . (72)

We will now use this representation to understand the effect of ridge shrinkage on the

performance of the infeasible efficient portfolio,

Rinfeas
t+1 (z) = E[F ]′(zI +Var[F ])−1Ft+1 . (73)

We call this portfolio infeasible because, in the big data regime, when P > T, neither

E[F ] ∈ RP nor E[FF ′] ∈ RP×P can be efficiently estimated from only T observations. By

construction, Rinfeas
t+1 (0) = λ′Ft+1 achieves the MaxSR, and

E(z) = E[Rinfeas(z)] = E[F ]′(zI + E[FF ′])−1E[F ] =
A(z)

1 + A(z)
, (74)

where we have defined

A(z) = E[F ]′(zI +Var[F ])−1E[F ]

=
∑
i

(SR(PCi))
2 µi

µi + z

=
∑
i

(SR(PCi))
2 1

1 + z/µi

≈
∑
i:µi>z

(SR(PCi))
2

(75)

and

A′(z) = −
∑
i

θ2i
1

(µi + z)2
. (76)

The function A(z) will be important in understanding ridge-regularization in the high

complexity case. It turns out that the risk of the efficient portfolio can be expressed in
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terms of the derivative of A(z) : Defining

(zA(z))′ =
∑
i

(SR(PCi))
2

(
µi

µi + z

)2

, (77)

a somewhat tedious calculation implies that

Var[Rinfeas(z)] =
(zA(z))′

(1 + A(z))2
. (78)

and

V(z) = E[(Rinfeas(z))2]

=
1

(1 + A(z))2
E[(E[F ]′(zI +Ψ)−1Ft)

2] =
1

(1 + A(z))2
E[E[F ]′(zI +Ψ)−1FtF

′
t(zI +Ψ)−1E[F ]]

=
1

(1 + A(z))2
E[E[F ]′(zI +Ψ)−1FtF

′
t(zI +Ψ)−1E[F ]]

= E[F ]′(zI +Ψ)−1Ψ(zI +Ψ)−1E[F ] + R1(z)
2

=
1

(1 + A(z))2

∑
i

θ2i (z + µi)
−2µi +

(
A(z)

1 + A(z)

)2

=
A(z) + zA′(z) + A2(z)

(1 + A(z))2

=
(A(z) + zA′(z))(1 + A(z))− zA(z)A′(z)

(1 + A(z))2

=
d

dz

(
zA(z)

1 + A(z)

)
.

(79)

Since the weights µi

µi+z
are monotone increasing in µi, we see that all that the ridge shrinkage

does it re-weights principal components, giving a larger weight to higher-variance PCs. The

following is a simple but important observation, implying that ridge shrinkage is always

detrimental to performance.
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Lemma 2 The Sharpe ratio SRinfeasible(z) = SR(Rinfeasible(z)) is monotone decreasing in

z.

B Proof of Proposition 2

We will frequently be using the Sherman-Morrison formula

(A+ xx′)−1 = A−1 −A−1xx′A−1/(1 + x′Ax), (A+ xx′)−1x = A−1x/(1 + x′Ax) (80)

for any matrix A ∈ RP×P and any vector x ∈ RP .

Lemma 3 We have

(A+B)−1 = B−1 − (A+B)−1AB−1 , (81)

and

(A+B)−1AB−1 ≤ A (82)

in the sense of positive semi-definite order.

Proof of Lemma 3. We have

(A+B)−1AB−1 = B−1/2(Â+ I)−1ÂB−1/2 ≤ B−1/2ÂB−1/2 = B−1AB−1 (83)

□

Proof of Proposition 2. Recall that, by Proposition 1,

w̃(St) = (StΣF,tS
′
t + Σε)

−1StλF (84)
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is the conditionally efficient portfolio with the return

R′
t+1w̃(St) = F ′

t+1(StΣF,tS
′
t + Σε)

−1StλF . (85)

For simplicity, in the sequal omit the t subindex for ΣF and Σ∗
F . We have

((ΣF )
−1 + S ′

tSt)
−1 ≤ ((ΣF )

−1)−1

Hence, defining

Qt = (StΣ
∗
FS

′
t + Σε)

−1 = Σ−1
ε − (StΣ

∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε , (86)

we get

E[R′
t+1w̃(St)]

= E[(StF̃t+1 + εt+1)
′(St(ΣF )S

′
t + Σε)

−1StλF ]

= E[λ′FS
′
t(St(ΣF )S

′
t + Σε)

−1StλF ]

= E[λ′FS
′
t(St(λFλ

′
F + Σ∗

F )S
′
t + Σε)

−1StλF ]

= E[λ′FS
′
t((StλF )(StλF )

′ + (StΣ
∗
FS

′
t + Σε))

−1StλF ]

=︸︷︷︸
(80)

E[λ′FS
′
t(Qt −QtStλFλ

′
FS

′
tQt(1 + λ′FS

′
tQtStλF )

−1)StλF ]

= E[Zt − Z2
t (1 + Zt)

−1] = E[Zt/(1 + Zt)] ,

(87)

where we have defined

Zt = λ′FS
′
tQtStλF = λ′FS

′
tΣ

−1
ε StλF − q , (88)
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with

q = λ′FS
′
tΣ

−1
ε StλF − λ′FS

′
tQtStλF . (89)

By Lemma 3,

(StΣ
∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε ≤ Σ−1

ε StΣ
∗
FS

′
tΣ

−1
ε (90)

and hence

q = λ′FS
′
t(StΣ

∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε StλF ≤ λ′FS

′
tΣ

−1
ε StΣ

∗
FS

′
tΣ

−1
ε StλF . (91)

For simplicity, we will assume that Xi,k,t all have the same fourth moment κ (otherwise, the

identity needs to be replaced by an inequality). Then, we have that, by Corollary 9,

E[λ′FS
′
tΣ

−1
ε StAS

′
tΣ

−1
ε StλF ] = λ′F

(
((tr Σ̂)2 + tr(Σ̂2))ΨAΨ+ tr(Σ̂2) tr(ΨA)Ψ

+ tr(Σ̂2) (κ− 2)Ψ1/2 diag(Ψ1/2AΨ1/2)Ψ1/2

)
λF

= (tr Σ̂)2λ′F

(
(1 +

tr(Σ̂2)

(tr Σ̂)2
)ΨAΨ+

tr(Σ̂2)

(tr Σ̂)2
tr(ΨA)Ψ

+
tr(Σ̂2)

(tr Σ̂)2
(κ− 2)Ψ1/2 diag(Ψ1/2AΨ1/2)Ψ1/2

)
λF

(92)

with

A = Σ∗
F (93)
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and

Σ̂ = Σ1/2Σ−1
ε Σ1/2 . (94)

By Assumption 2, tr(Σ̂2)

(tr Σ̂)2
→ 0 and, since λF and Ψ and A and tr(Σ̂) are uniformly bounded,

we get that

E[λ′FS
′
tΣ

−1
ε StAS

′
tΣ

−1
ε StλF ] ≈ (tr Σ̂)2λ′FΨAΨλF . (95)

Since, by Assumption 1, tr(A) is uniformly bounded, we also get that tr(ΨAΨ) ≤ ∥Ψ∥2 tr(A)

is uniformly bounded and, hence, λ′FΨAΨλF → 0 by (15).

Thus, E[qt] → 0 and hence qt → 0 in probability. Now,

E[λ′FS
′
tΣ

−1
ε StλF ] = tr(Σ̂)λ′FΨλF (96)

whereas, by Corollary 9,

E[(λ′FS
′
tΣ

−1
ε StλF )

2] = E[λ′FS
′
tΣ

−1
ε StλFλ

′
FS

′
tΣ

−1
ε StλF ]

= λ′F

(
((tr Σ̂)2 + tr(Σ̂2))ΨλFλ

′
FΨ+ tr(Σ̂2) tr(ΨλFλ

′
F )Ψ

+ tr(Σ̂2) (κ− 2)Ψ1/2 diag(Ψ1/2λFλ
′
FΨ

1/2)Ψ1/2

)
λF

(97)

and the same argument as in (92) implies that

E[(λ′FS
′
tΣ

−1
ε StλF )

2] ≈ tr(Σ̂)2(λ′FΨλF )
2 . (98)

Thus, Var[λ′FS
′
tΣ

−1
ε StλF ] → 0 and, hence, λ′FS

′
tΣ

−1
ε StλF → tr(Σ̂)λ′FΨλF in probability.
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As a result, Zt − tr(Σ̂)λ′FΨλF → 0 is probability, and hence

Zt

1 + Zt

− tr(Σ̂)λ′FΨλF

1 + tr(Σ̂)λ′FΨλF
→ 0 (99)

in probability, and the dominated convergence theorem implies that the same holds in

expectation. Similarly, for the second moment, we have

E[(πMV
t )′Rt+1R

′
t+1π

MV
t ]

= E[λ′S ′
t(St(ΣF )S

′
t + Σε)

−1(St(ΣF )S
′
t + Σε)(St(ΣF )S

′
t + Σε)

−1Stλ]

= E[R′
t+1π

MV
t ] → tr(Σ̂)λ′FΨλF

1 + tr(Σ̂)λ′FΨλF
.

(100)

Now, for the factor portfolios, we have

E[Ft] = E[S ′
tRt+1] = E[S ′

t(StF̃t+1 + εt+1)]

= E[S ′
tStF̃t+1] = E[Ψ1/2X ′

tΣXtΨ
1/2F̃t+1]

= E[Ψ1/2X ′
tΣXtΨ

1/2]λF

= tr(Σ)E[Ψ1/2Ψ1/2]λF

= tr(Σ)ΨλF ,

(101)

and, again by Corollary 9 and the same argument as in (92), we have

E[FtF
′
t ] = E[S ′

t(StF̃t+1 + εt+1)(StF̃t+1 + εt+1)
′St|λ] = E[S ′

t(St(ΣF )S
′
t + Σε)St]

≈ tr(ΣΣε)Ψ + tr(Σ)2Ψ(ΣF )Ψ .
(102)

Then, defining

Q = (tr(ΣΣε)Ψ + tr(Σ)2ΨΣ∗
FΨ)−1 , (103)
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we get that the efficient portfolio of factors is given by

πF = (tr(ΣΣε)Ψ + tr(Σ)2ΨΣFΨ)−1ΨλF

= (tr(ΣΣε)Ψ + tr(Σ)2Ψ(Σ∗
F + λFλ

′
F )Ψ)−1ΨλF

=︸︷︷︸
(80)

1

1 + Z
QΨλF ,

(104)

where

Z = tr(Σ)2λ′FΨQΨλF . (105)

By the same argument as above,

λ′F (ΨQΨ−Ψ(tr(ΣΣε)Ψ)−1Ψ)λF → 0 (106)

by Assumption 15 because ΣF
∗ has a bounded trace. Thus,

Z ≈ tr(Σ)2

tr(ΣΣε)
λ′FΨλF (107)

and

E[π′
FFt+1] = E[λ′F

1

1 + Z
ΨQΨλF ] ≈

Z

1 + Z
, (108)

while

E[π′
FFt+1F

′
t+1πF ] = E[π′

FFt+1] , (109)
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and the proof is complete because

tr(ΣΣ−1
ε )λ′FΨλF =

tr(Σ)2

tr(ΣΣε)
λ′FΨλF (110)

when Σε = I.

Finally, the fact that E[(π′
FFt+1−R′

t+1w̃(St))
2] → 0 follows because, otherwise, one could

construct a better-diversified portfolio by combining the two, which is impossible. □

C Auxilliary Results

Definition 1 (Strongly uncorrelated variables) We say that fi, i = 1, · · · , K are

strongly uncorrelated if E[fi1fi2 ] = 0 for all i1 ̸= i2, E[fi1fi2fi3 ] = 0 for any i1, i2, i3 and

E[fi1fi2fi3fi4 ] = 0 unless the set {i1, i2, i3, i4} contains exactly two different elements.

Lemma 4 Suppose that X = (Xi)
P
i=1 with Xi being strongly uncorrelated according to

Definition 1. Suppose also that E[X2
i ] = 1, E[X4

i ] ≤ k, and let AP be random matrices

independent of X and such that ∥AP∥2 = o(1). Let also

Yt = X ′
tAPXt . (111)

Then,

(1) Yt = tr(APXtX
′
t) (112)

(2) lim
P→∞

E[(Yt − tr(AP ))
2|AP ] = 0 (113)

In particular, If AP = BP/P where ∥BP∥ ≤ K, we have ∥AP∥22 ≤ P∥BP∥2/P 2 ≤ K, and

hence

lim
P→∞

E[(X ′
tBPXt − tr(BP ))

2|BP ]/P
2 = 0 . (114)
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Proof of Lemma 4.

(1):

X ′
tAXt ∈ R ⇒ X ′

tAXt = tr(X ′
tAXt)

tr(AB) = tr(BA) ⇒ tr(X ′
tAXt) = tr(AXtX

′
t)

(2): Define Yt = XtAPXt. We have

E[Yt] = E[tr(AP (XtX
′
t))|AP ] = tr(APE[XtX

′
t]) = tr(AP ) ,

and hence

E[(Yt − tr(AP ))
2|AP ] = Var[Yt|AP ] = E[Y 2

t |AP ]− E[Yt|AP ]
2 (115)

and hence it suffices to prove that

E[Y 2
t |AP ] − (tr(AP ))

2 → 0 (116)

For simplicity, we assume from now on that AP is deterministic, and write AP = (Ai,j)
P
i,j=1.

Then,

Yt =
∑
i,j

XiXjAi,j (117)

and therefore

Y 2
t =

∑
i1,j1,i2,j2

Xi1Xj1Ai1,j1Ai2,j2Xi2Xj2 (118)
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Now we attempt to compute the expectation:

E[Y 2
t ] =

∑
i1,j1,i2,j2

Ai1,j1Ai2,j2E[Xi1Xj1Xi2Xj2 ]

= (
∑
i

A2
i,iE[X

4
i ] +

∑
i,j

(A2
i,j + Ai,iAj,j)E[X

2
iX

2
j ]

= (
∑
i

kA2
i,i +

∑
i,j

A2
i,j + 2Ai,iAj,j)

= ((k − 1)
∑
i

A2
i,i +

∑
i,j

A2
i,j + tr(A)2)

(119)

We have

∑
i

A2
i,i ≤

∑
i,j

A2
i,j = ∥A∥22 , (120)

and therefore

|E[Y 2
t ]− tr(A)2| ≤ k∥A2∥22 , (121)

and the proof is complete. □

Recall that

Ft+1 = S ′
tRt+1 (122)

and

λ̂(z) = (zI +BT )
−1 1

T

T∑
t=1

Ft (123)
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where

BT =
1

T

T∑
t=1

FtF
′
t , (124)

while

R̂M
T+1(z) = λ̂(z)′Ft+1 = (Stλ̂(z))

′Rt+1 . (125)

In the sequel, to simplify some expressions, we often assume that factor risk premia

λF ∼ N(0,Σλ/P ) for some uniformly bounded sequence of matrices Σλ = Σλ(P ). In this

case,

λ′FAλF ≈ P−1 tr(AΣλ) (126)

in probability (and in L2). All our results hold under the more general condition (15), and

all expressions can be rewritten without Σλ using (126).

Lemma 5 We have

(F̃ ′
t+1AP F̃t+1 − tr((ΣF,tAP ) + P−1 tr(APΣλ))) → 0 (127)

is L2 and hence in probability, for any sequence of bounded matrices AP .

Proof of Lemma 5. The proof follows directly from Lamme 4. □

We will need the following lemma, whose proof follows by direct calculation.

Lemma 6 Suppose that Xt ∈ RN×P is a matrix with i.i.d. elements satisfying E[Xi,kXj,l] =

δ(i,k),(j,l). Then,

E[X ′
tΣXt] = tr(Σ) IP×P .
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We can now prove

Lemma 7 (Expected Factor Moments) Suppose a normalization tr(Σ) = 1 and let

σ∗ = tr(ΣΣε) and E[X
4
i,k] = κ for all i, k. We have

E[S ′
tΣεSt] = tr(ΣΣε)Ψ

and

E[Ft+1F
′
t+1] = ((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
) (128)

Thus,

∥E[Ft+1F
′
t+1]− (ΨΣFΨ+ σ∗Ψ)∥ → 0 (129)

Proof of Lemma 7. Recall that, by Assumption 2, tr(Σ2) → 0. We have

E[Ft+1F
′
t+1] = E[S ′

t(StF̃ + ε)(StF̃ + ε)′St] = E[S ′
tStΣFS

′
tSt] + E[S ′

tΣεSt] ,

and

E[S ′
tΣεSt] = E[Ψ1/2X ′

tΣ
1/2ΣεΣ

1/2XtΨ
1/2] = Ψ1/2E[X ′

tΣ
1/2ΣεΣ

1/2Xt]Ψ
1/2 = Ψtr(ΣΣε) ,

Defining β̃ = Ψ1/2F̃t+1, we get

E[S ′
tStβ̃β̃

′S ′
tSt] = E[Ψ1/2X ′

tΣXtΨ
1/2β̃β̃′Ψ1/2X ′

tΣXtΨ
1/2] = E[Ψ1/2X ′

tΣXtβ̃β̃
′X ′

tΣXtΨ
1/2]

= Ψ1/2E[X̃ ′
tDX̃tβ̃β̃

′X̃ ′
tDX̃t]Ψ

1/2 ,

(130)
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where we have defined Σ = U ′DU and D is diagonal and U is orthogonal and X̃ = UX are

still have the same moments as X by the assumptions made.

Now,

E[X̃ ′
tDX̃tβ̃β̃

′X̃ ′
tDX̃t]k1,k2 = E[

∑
i1,i2,l1,l2

Di1Di2 X̃i1,k1X̃i1,l1 β̃l1 β̃l2X̃i2,l2X̃i2,k2 ] .

First we study the terms with i1 ̸= i2 :

∑
i1 ̸=i2

Di1Di2 E[
∑
l1,l2

X̃i1,k1X̃i1,l1 β̃l1 β̃l2X̃i2,l2X̃i2,k2 ] =
∑
i1 ̸=i2

Di1Di2 β̃k1 β̃k2 = ((trΣ)2−tr(Σ2))β̃k1 β̃k2

At the same time,

∑
i1=i2

D2
i1
E[
∑
l1,l2

X̃i1,k1X̃i1,l1 β̃l1 β̃l2X̃i2,l2X̃i2,k2 ]

depends on whether k1 = k2. If k1 = k2, then we have

∑
i1=i2

D2
i1
E[
∑
l1,l2

X̃2
i1,k1

X̃i1,l1 β̃l1 β̃l2X̃i1,l2 ] = tr(Σ2)(κβ̃2
k1
+ ∥β̃∥2)

and if k1 ̸= k2 then we need that ℓ1, ℓ2 coincide with k1, k2, so that

∑
i1=i2

Di1Di2E[
∑
l1,l2

X̃i1,k1X̃i1,l1 β̃l1 β̃l2X̃i2,l2X̃i2,k2 ] = 2
∑
i1=i2

D2
i1
E[X̃2

i1,k1
X̃2

i1,k2
]β̃k1 β̃k2 = 2 tr(Σ2)β̃k1 β̃k2

Thus,

E[X̃ ′
tDX̃tβ̃β̃

′X̃ ′
tDX̃t]k1,k2

= ((tr Σ)2 − tr(Σ2))β̃k1 β̃k2 + 2 tr(Σ2)β̃k1 β̃k2(1− δk1,k2) + tr(Σ2)(κβ̃2
k1
+ ∥β̃∥2)δk1,k2

= ((tr Σ)2 + tr(Σ2))β̃k1 β̃k2 + tr(Σ2)((κ− 2)β̃2
k1
+ ∥β̃∥2)δk1,k2

(131)
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Thus, by formula (130), we get

E[S ′
tStλλ

′S ′
tSt] = ((tr Σ)2+tr(Σ2))ΨΣFΨ+tr(Σ2)((κ−2)Ψ1/2 diag(β̃2

k1
)Ψ1/2+∥β̃∥2Ψ) (132)

and the claim follows because ∥β̃∥2 = λ′λF .

Corollary 9 We have

E[S ′
tStAS

′
tSt] = ((tr Σ)2 + tr(Σ2))ΨAΨ+ tr(Σ2) tr(ΨA)Ψ

+ tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2AΨ1/2)Ψ1/2
(133)

where diag(Ψ1/2AΨ1/2) is the diagonal matrix with diagonal coinciding with that of

diag(Ψ1/2AΨ1/2).

Proof. Writing

A =
∑
i

λiβiβ
′
i

we can apply the calculations for rank-one A. □

The proof of Lemma 7 is complete.

□

D Technical Results from RMT

Theorem 10 The eigenvalue distribution of E[FtF
′
t ] converges to that of Ψσ∗ where σ∗ =

lim tr(ΣΣε) in the limit as N,P, T → ∞, P/T → c, so that

1

P
tr
(
(zI + E[FtF

′
t ])

−1
)

→ σ−1
∗ mΨ(−z/σ∗) = mσ∗Ψ(−z) =

1

P
tr((zI+σ∗Ψ)−1) , (134)
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whereas

1

P
tr((zI +BT )

−1) → m(−z; c) , (135)

where, for each z < 0, we have that m(z; c) is the unique positive solution to the nonlinear

master equation

m(z; c) =
1

1 − c − c z m(z; c)
mσ∗Ψ

(
z

1 − c − c z m(z; c)

)
. (136)

This theorem’s proof is non-trivial and based on techniques from the random matrix

theory from (Bai and Zhou, 2008). Applying standard results from random matrix theory to

Ft is not straightforward because of the complex cross-dependence in higher moments of Ft

introduced by the signals. Namely, even if Rt+1 are conditionally independent, S ′
tRt+1 have

very strong cross-dependencies. See Appendix F for details.

We will also need the following lemma from KMZ.

Lemma 8 Define ξ(z; c) through

c−1ξ(z; c)

1 + ξ(z; c)
= 1 − m(−z; c)z . (137)

Then,

1

T
tr((zI +BT )

−1Ψ) → ξ(z; c) (138)

almost surely and

1

T
F ′
T+1(zI +BT )

−1FT+1 → ξ(z; c) (139)

in probability. Furthermore, ξ(z; c) < c/z.
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Define the effective shrinkage

Z∗(z; c) = z (1 + ξ(z; c)) ∈ (z, z + c) (140)

Then, Z∗(z; c) is monotone increasing in z and c. In the ridgeless limit as z → 0, we have

Z∗(z; c) →


0, c < 1

1/m̃(c), c > 1

(141)

where m̃(c) > 0 is the unique positive solution to

c− 1 =

∫ dH(x)
m̃(1+m̃ x)∫ xdH(x)
1+m̃ x

(142)

E The Proof that Managed Portfolio Returns Satisfy Assumption

of RMT

Lemma 9 Let XP be a sequence of positive semi-definite matrices with tr(XP ) ≤ K. Then,

lim
M→∞

(
1

P
tr(zI + AP +XP )

−1 − 1

P
tr(zI + AP )

−1) = 0

for any positive semi-definite matrices AP .

Proof. We have

1

P
tr(zI +AP +XP )

−1 − 1

P
tr(zI +AP )

−1 =
1

P
tr((zI +AP +XP )

−1 − (zI +AP )
−1)

and the claim follows because

1

P
tr((zI +AP +XP )

−1 − (zI +AP )
−1) = − 1

P
tr((zI +AP +XP )

−1XP (zI +AP )
−1)

76



and

tr((zI + AP +XP )
−1XP (zI + AP )

−1) = tr(XP (zI + AP )
−1(zI + AP +XP )

−1)

≤ tr(XP )∥(zI + AP )
−1(zI + AP +XP )

−1∥ ≤ Kz−2
(143)

Thus, the difference is bounded in absolute value by Kz−2/M. □

We will need the following auxiliary lemma.

Lemma 10 Let ε be a random vector with independent N(0, 1) coordinates. We have

E[εZ ′ε] = Z

and

E[ε′Zε′] = Z ′

for any vector Z. Furthermore,

E[ε′Aε] = tr(A)

for any matrix A. Furthermore,

E[ε′tBεtε
′
tBεt] = (κε − 1) 0.5(tr(BB) + tr(B′B)) + tr(B)2 (144)

and

E[εtε
′
tBεtε

′
t] = (κε − 1)0.5(B +B′) + tr(B)

where κε = E[ε̃4].
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Proof. We have

E[εZ ′ε]i,j = E[εi
∑
j

Zjεj] =
∑
j

Σε,i,jZj

and the first claim follows. The second claim follows because

E[ε′Zε′] = EεZ ′ε]′ .

For the third claim, we have

E[ε′Aε] = trE[ε′Aε] = trE[Aεε′] = tr(A) (145)

For the last claim: first, we do a transformation εt = ε̃t and then we make the observation

that, for any matrix B,

ε′Bε = 0.5ε′(B +B′)ε.

Since 0.5(B +B′) is symmetric, we can diagonalize it: B̃ = (0.5(B +B′)). Then,

E[ε′tBεtε
′
tBεt] = E[(

∑
i

ε2i,tλi(0.5(B +B′)))2] = (κε − 1) tr(B̃2) + tr(B̃)2 , (146)

and we have

tr(B̃2) = tr((0.5(B +B′))(0.5(B +B′))) = 0.25(tr(BB) + 2(trB′B) + tr(B′B′))

and

tr(B′B′) = tr(B′B′) = tr(BB) .
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Let ε = ε̃ and B̃ = UΛU ′ and ε̂ = U ′ε̃

E[εtε
′
tBεtε

′
t]

= E[ε̃ε̃′B̃ε̃ε̃′]

= UE[ε̂ε̂′Λε̂ε̂′]U ′

= UE[ε̂
∑
i

ε̂2i1λi1(B̃)ε̂′]U ′

= (κε − 1)B̃ + tr(B̃)

= (κε − 1)0.5(B +B′) + tr(B)

(147)

□

Lemma 11 (Managed Portfolios Satisfy The RMT Conditions) Let AP be a se-

quence of symmetric P × P matrices such that ∥AP∥ ≤ K and AP are independent of

Ft. Then, E[FtF
′
t ] is uniformly bounded and

Var[
1

T
F ′
tAPFt] → 0 , (148)

so that

1

T
(F ′

tAPFt − tr (AP σ∗Ψ)) → 0

in probability. That is, averaging across P factors leads to constant risk, no matter which

matrix A we use to measure it.

An important observation is that, by Lemma 7,

1

T
tr(APE[FtF

′
t ]) ≈ 1

T
tr(AP (ΨΣFΨ+ σ∗Ψ)) . (149)
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However, since ΣF has a uniformly bounded trace norm, we have

1

T
tr(AP (ΨΣFΨ+ σ∗Ψ)) ≈ 1

T
tr(AP (σ∗Ψ)) (150)

Similarly, the following is a direct consequence of Lemma 7.

Lemma 12 Let AP , BP be sequences of symmetric P ×P matrices such that ∥AP∥, ∥BP∥ ≤

K, and AP , BP are independent of Ft. Then,

(λ′E[APFtF
′
tBP ]λ − λ′AP (ΨΣFΨ+ σ∗Ψ)BPλ) → 0 .

If λ satisfies the technical condition (15), then

(λ′E[APFtF
′
tBP ]λ − λ′AP (λFλ

′Ψ+ σ∗Ψ)BPλ) → 0

because tr(ΣF,t) is bounded.

Note that tr (AP FtF
′
t) = F ′

tAPFt.

Proof of Lemma 11. For simplicity, we will assume that AP is deterministic.42 We can

also assume that AP is symmetric because F ′
tAPFt = Ft0.5(AP + A′

P )Ft. We need to prove

that

1

T 2
E[F ′

tAPFtF
′
tAPFt] −

(
1

T
E[F ′

tAPFt]

)2

→ 0

For simplicity, we will assume that Σε = I. We have by Lemma 7 that

E[FtF
′
t ] = ((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(Σ) + tr(ΨΣF ) tr(Σ

2)
) (151)

42Otherwise, we replace all expectations below by expectations conditional on AP .
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and, with ΣF having uniformly bounded traces and Assumption 2, we get

1

T
E[F ′

tAPFt] =
1

T
trE[APFtF

′
t ]

≈ 1

T
tr

(
AP

(
(tr Σ)2ΨΣFΨ+ tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2ΣFΨ

1/2)Ψ1/2

+Ψ
(
tr(Σ) + tr(ΨΣF ) tr(Σ

2)
)))

≈ T−1 tr(APΨ)

(152)

since

1

TP
tr(ΨAPΨΣF ) = O(1/T ),

and, similarly, the kurtosis term does not matter because it has a uniformly bounded trace.

Now, we have

FtF
′
t = S ′

t−1(St−1ββ
′S ′

t−1 + εtβ
′S ′

t−1 + St−1βε
′
t + εtε

′
t)St−1

= Ztββ
′Zt + S ′

t−1εtβ
′Zt + Ztβε

′
tSt−1 + S ′

t−1εtε
′
tSt−1 .

(153)

with Zt = S ′
t−1St−1. Then, using the fact that ε and all third moments of ε have zero
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expectations as well as Lemma 10, we have

1

T 2
E[F ′

tAFtF
′
tAFt] =

1

T 2
trE[FtF

′
tAFtF

′
tA]

=
1

T 2
trE[(Ztββ

′Zt + S ′
t−1εtβ

′Zt + Ztβε
′
tSt−1 + S ′

t−1εtε
′
tSt−1)A

(Ztββ
′Zt + S ′

t−1εtβ
′Zt + Ztβε

′
tSt−1 + S ′

t−1εtε
′
tSt−1)A]

=
1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

T 2
2 trE[Ztββ

′ZtAS
′
t−1εtε

′
tSt−1A]

+
1

T 2
2 trE[S ′

t−1εtβ
′ZtAS

′
t−1εtβ

′ZtA]

+
1

T 2
2 trE[S ′

t−1εtβ
′ZtAZtβε

′
tSt−1A]

+
1

T 2
trE[S ′

t−1εtε
′
tSt−1AS

′
t−1εtε

′
tSt−1A]

=
1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

T 2
2 trE[Ztββ

′ZtAZtA]

+
1

T 2
2 trE[ZtAZtββ

′ZtA]

+
1

T 2
2 trE[(β′ZtAZtβ)ZtA]

+
1

T 2
((κε − 1) trE[ZtAZtA] + trE[tr(ZtA)ZtA])

=
1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

T 2
4 trE[Ztββ

′ZtAZtA]

+
1

T 2
2 trE[(β′ZtAZtβ)ZtA]

+
1

T 2
((κε − 1) trE[ZtAZtA] + trE[tr(ZtA)ZtA])

= Term1 + Term2 + Term3 + Term4 + Term5 ,

(154)
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where in the last term we have used Lemma 10 to show that

trE[S ′
t−1εtε

′
tSt−1AS

′
t−1εtε

′
tSt−1A]

= trE[S ′
t−1

(
(κε − 1)(St−1AS

′
t−1) + tr((St−1AS

′
t−1))

)
St−1A]

= (κε − 1) trE[ZtAZtA] + trE[tr(ZtA)ZtA] .

(155)

In our proofs, we will be using Newton’s identities.

Lemma 13 (Newton’s identities) Let A be a matrix with eigenvalues λi. Then,

∑
i1,i2,i1 ̸=i2

λi1λi2 = (trA)2 − tr(A2)

∑
i1,i2,i3 all different

λi1λi2λi3 = (trA)3 − 3 tr(A) tr(A2) + 2 tr(A3)

∑
i1,i2,i3,i4 all different

λi1λi2λi3λi4

= (trA)4 − 6(tr(A))2 tr(A2) + 3(tr(A2))2 + 8(trA)(tr(A3))− 6 tr(A4) .

(156)

We also note that Assumption 2 implies

tr(Σ3) ≤ tr(Σ2) tr(Σ) = o((tr Σ)3), tr(Σ4) ≤ (tr(Σ2))2 = o((tr Σ)4) (157)

E.1 Term1 in (154)

We start with the first term. We have

1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA] =

1

T 2
E[(β′ZtAZtβ)

2] . (158)

Writing

Zt = S ′
t−1St−1 = Ψ1/2X ′

t−1ΣXt−1Ψ
1/2
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and defining

β̃ = Ψ1/2β ,

and

Ã = Ψ1/2AΨ1/2 ,

and then using rotational invariance of all moments up to eight, we may assume that Ã is

diagonal and Σ is diagonal and β̃ = e1∥β̃∥ = (1, 0, · · · , 0)∥β̃∥. Note that

∥β̃∥2 = β′Ψβ ∼ b∗
1

P
tr(Ψ) .

Then, setting λk = λk(Ã) we get

1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA] =

1

T 2
E[(β′ZtAZtβ)

2]

=
1

T 2
∥β̃∥4E[

( ∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1

)2

]

=
1

T 2
∥β̃∥4E[

( ∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1

)2

]

=
1

T 2
∥β̃∥4E[

∑
i2,j2,k2

∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1Xi2,1λi2(Σ)Xi2,k2λk2Xj2,k2λj2(Σ)Xj2,1]

(159)

• First, consider the terms with k1 = k2 in (159):

1

T 2
∥β̃∥4E[

∑
i2,j2

∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1Xi2,1λi2(Σ)Xi2,k1λk1Xj2,k1λj2(Σ)Xj2,1]

(160)
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Using Newton’s identities, we get that the contribution of terms with k1 = 1 is given

by

∥β̃∥4 1

T 2
E[
∑
i2,j2

∑
i1,j1

X2
i1,1
λi1(Σ)λ

2
1X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

= ∥β̃∥4 1

T 2
λ21

(
E[

∑
i2,j2,i1,j1 all different

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 only two are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 only three are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 all four are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

)

= ∥β̃∥4λ21
1

T 2

(
(tr Σ)4 − 6(tr Σ)2(tr(Σ2)) + 8(tr Σ)(tr(Σ3)) + 3(tr(Σ2))2 − 6 tr(Σ4)

+

(
4

2

)
E[X4]

∑
j

λj(Σ)
2

∑
i1,j1 ̸=j,i1 ̸=j1

λi1(Σ)λj1(Σ)

+ 4E[X6]
∑
j

λj(Σ)
3
∑
i1 ̸=j

λi1(Σ)

+ E[X8] tr(Σ4)

)

= ∥β̃∥4λ21
1

T 2

(
(tr Σ)4 − 6(tr Σ)2(tr(Σ2)) + 8(tr Σ)(tr(Σ3)) + 3(tr(Σ2))2 − 6 tr(Σ4)

+

(
4

2

)
E[X4]

∑
j

λj(Σ)
2((tr(Σ)− λj)

2 − (tr(Σ2)− λ2j)

+ 4E[X6](tr(Σ) tr(Σ3)− tr(Σ4)) + E[X8] tr(Σ4)

)

= O

(
(tr Σ)4(β̃′Ãβ̃)2/(T 2)

)
= O(1/T 2)

(161)
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Here, we have used the fact that

(tr Σ)4(β̃′Ãβ̃)2 = O()

because (tr Σ)2b∗ converges to a finite limit. The rest terms with k1 = k2 ̸= 1 must

have i1, i2, j1, j2 have at least two identical pairs. The first contribution would be

∥β̃∥4E[
∑

i1=i2 ̸=j1=j2;k1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λ2k1X
2
j1,k1

λ2j1(Σ)X
2
j1,1

]

∼ ∥β̃∥4 tr(Ã2)
(
(tr(Σ2))2 − tr(Σ4)

)
∼ ∥β̃∥4 tr(Ã2) (tr(Σ2))2 ,

(162)

there will be three contributions like this, corresponding to the three cases: i1 = i2, i1 =

j1, and i1 = j2.

In the case when more than two out of i1, i2, j1, j2 are identical, they would all have to

be identical. This contribution would be negligible because it would give

∥β̃∥4E[X4] tr(Ã2) (tr(Σ4)) = O(P )

which is negligible.

• We can now focus on the case k1 ̸= k2 in (159). First, consider the terms with k1 = 1.

By symmetry, terms with k2 = 1 give the same contribution. Since k2 ̸= 1 and
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∥β̃∥2λ1 = β̃′Ãβ̃, Newton’s identities imply that

λ1
1

T 2
∥β̃∥4E[

∑
i2,j2,k2 ̸=1

∑
i1,j1

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)Xi2,1λi2(Σ)Xi2,k2λk2Xj2,k2λj2(Σ)Xj2,1]

∼ λ1
1

T 2
∥β̃∥4E[

∑
i2,k2

∑
i1,j1

X2
i1,1
X2

j1,1
λi1(Σ)λj1(Σ)X

2
i2,1
λi2(Σ)

2X2
i2,k2

λk2 ]

∼ (β̃′Ãβ̃) ∥β̃∥2 1

T 2
tr(Ã)

(
E[
∑
i2

∑
i1,j1

X2
i1,1
X2

j1,1
λi1(Σ)λj1(Σ)X

2
i2,1
λi2(Σ)

2]

)

= (β̃′Ãβ̃) ∥β̃∥2 1

T 2
tr(Ã)

( ∑
i2,i1,j1 all different

λi1(Σ)λj1(Σ)λi2(Σ)
2

+
∑

i1=j1 ̸=i2

E[X4]λi1(Σ)
2λi2(Σ)

2

+ 2
∑

i1 ̸=j1=i2

E[X4]λi1(Σ)λi2(Σ)
3

+ E[X6] tr(Σ4)

)

= (β̃′Ãβ̃) ∥β̃∥2 1

T 2
tr(Ã)

(∑
i2

λi2(Σ)
2((tr(Σ)− λi2)

2 − (tr(Σ2)− λ2i2))

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]
∑
i2

λi2(Σ)
3(tr(Σ)− λi2)

+ E[X6] tr(Σ4)

)

= (β̃′Ãβ̃) ∥β̃∥2 1

T 2
tr(Ã)

(
(tr(Σ)2) tr(Σ2)− 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
(163)

because the rest terms are zero. And this term gets multiplied by 2 when we add the
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contribution of the k2 = 1 case. As above, all these terms are

O(∥λ∥4(tr(Σ))4 tr(Ã)/(T 2)) = O(P/T 2)

and hence are negligible.

• Now, in the case when k1 ̸= k2 and both are different from 1 in (159), we immediately

get that (i1, i2, j1, j2) must either be all identical, or come in two identical pairs. The

first case gives a contribution of

∥β̃∥4E[
∑

i,k1 ̸∈{k2,1}

X4
i,1X

2
i,k1
X2

i,k2
λi(Σ)

4λk1λk2 ] ∼ ∥β̃∥4E[X4] (tr(Ã)2−tr(Ã2)) tr(Σ4) = o(P 2) .

The second one ought to have i1 = j1, i2 = j2 because k1 ̸= k2 and both are not equal

to 1, giving

∥β̃∥4E[
∑
i2,k2

∑
i1,k1

X2
i1,1
X2

i1,k1
λk1λ

2
i1
(Σ)λ2i2(Σ)X

2
i2,1
X2

i2,k2
λk2 ]

∼ ∥β̃∥4((tr Ã)2 − tr(Ã2))

(
E[
∑
i2

∑
i1

X2
i1,1
λ2i1(Σ)λ

2
i2
(Σ)X2

i2,1
]

)

= ∥β̃∥4((tr Ã)2 − tr(Ã2))((tr(Σ2))2 − tr(Σ4))

∼ ∥β̃∥4((tr Ã)2 − tr(Ã2))(tr(Σ2))2

(164)
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Summarizing, the dominant terms are (162) (multiplied by 3) and (164), so that

Term1

∼ 3∥β̃∥4 tr(Ã2) (tr(Σ2))2
1

T 2
+ ∥β̃∥4E[X4] tr(Ã2) (tr(Σ4))

1

T 2

+ 2(β̃′Ãβ̃) ∥β̃∥2 1

T 2
tr(Ã)

(
tr(Σ2)(tr(Σ))2 − 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
1

T 2

+ ∥β̃∥4E[X4] (tr(Ã)2 − tr(Ã2)) tr(Σ4)
1

T 2

+ ∥β̃∥4((tr Ã)2 − tr(Ã2))(tr(Σ2))2
1

T 2

∼ ∥β̃∥4((tr Ã)2 + 2 tr(Ã2))(tr(Σ2))2/(T 2) ∼ ∥β̃∥4(tr Ã)2(tr(Σ2))2/(T 2)

(165)

because tr(Ã2) = O(P ).

E.2 Term2 in (154)

We now proceed with the second term (note that it comes with a factor of four). We have

E[λ′ZtAZtAZtλ] = ∥β̃∥2E[
∑

Xi1,1λi1(Σ)Xi1,k1λk1Xi2,k1λi2(Σ)Xi2,k2λk2Xi3,k2λi3(Σ)Xi3,1] .

(166)

• Suppose first that k1 = k2 ̸= 1 in (166). The respective contribution is

∥β̃∥2E[
∑

Xi1,1λi1(Σ)Xi1,k1λk1X
2
i2,k1

λi2(Σ)λk1Xi3,k1λi3(Σ)Xi3,1] , (167)
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and hence i1 = i3 for non-zero terms, so that this contribution becomes

∥β̃∥2E[
∑

X2
i1,1
λi1(Σ)

2X2
i1,k1

λ2k1X
2
i2,k1

λi2(Σ)]

= ∥β̃∥2
( ∑

i1 ̸=i2,k1 ̸=1

λi1(Σ)
2λ2k1λi2(Σ) + E[X4]

∑
i1,k1 ̸=1

λi1(Σ)
3λ2k1

)

∼ ∥β̃∥2 tr(Ã2)((E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2)) = O(P (b∗(tr Σ)
2) tr Σ) = O(P )

(168)

• The terms with k1 = k2 = 1 in (166) give

λ21∥β̃∥2E[
∑

X2
i1,1
λi1(Σ)X

2
i2,1
λi2(Σ)X

2
i3,1
λi3(Σ)]

∼ λ21∥β̃∥2
( ∑

i1,i2,i3 pairwise different

λi1(Σ)λi2(Σ)λi3(Σ)

+ 3
∑

i1,i2 different

E[X4]λ2i1(Σ)λi2(Σ) + E[X6] tr(Σ3)

)

= (β̃′Ãβ̃)2∥β̃∥2
(
(tr Σ)3 − 3(tr Σ) tr(Σ2) + 2 tr(Σ3)

+ 3E[X4]((tr Σ) tr(Σ2)− tr(Σ3)) + E[X6] tr(Σ3)

)
= O(b∗(tr Σ)

2 tr Σ) = O()

(169)

by Newton’s identities, where 3
∑

i1,i2 different appears because there are three pos-

sibilities for a coincidence of of pair among i1, i2, i3, and where we have used that

∥β̃∥2λ1 = β̃′Ãβ̃.

• For the terms with k1 ̸= k2 and none of them equal to 1 in in (166), we must have
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i1 = i2 = i3 for them to be non-zero, giving

∥β̃∥2E[
∑

X2
i1,1
λi1(Σ)

3X2
i1,k1

λk1X
2
i1,k2

λk2 ] ∼ ∥β̃∥2((tr(Ã))2 − tr(Ã2)) tr(Σ3)

= o(P 2)
(170)

since ((tr(Ã))2 − tr(Ã2)) = O(P 2).

• If k1 ̸= k2 = 1 in (166), then we get the contribution

∥β̃∥2E[
∑

Xi1,1λi1(Σ)Xi1,k1λk1Xi2,k1λi2(Σ)Xi2,1λ1λi3(Σ)X
2
i3,1

]

= β̃′Ãβ̃E[
∑

Xi1,1λi1(Σ)Xi1,k1λk1Xi2,k1λi2(Σ)Xi2,1λi3(Σ)X
2
i3,1

]

= {only terms with i1 = i2 survive}

= β̃′Ãβ̃E[
∑

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λk1λi3(Σ)X
2
i3,1

]

∼ β̃′Ãβ̃ (tr Ã)

(
tr(Σ)(tr(Σ2)) + (E[X4]− 1) tr(Σ3)

)
= O(Pb∗(tr(Σ))

3) = O(P )

(171)

and there is an identical contribution with k1 = 1 ̸= k2.

Thus,

1

4
Term2 ∼ ∥β̃∥2 tr(Ã2)((E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2))

+ ∥β̃∥2((tr(Ã))2 − tr(Ã2)) tr(Σ3)

+ 2β̃′Ãβ̃ (tr Ã)

(
tr(Σ)(tr(Σ2)) + (E[X4]− 1) tr(Σ3)

)
∼ o(T 2) .

(172)
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E.3 Term3 in (154)

We now proceed with the third term. We have

2
1

T 2
E[tr(AZt)λ

′ZtAZtλ]

= 2∥β̃∥2 1

T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1,i2

Xi1,1λi1(Σ)Xi1,k1λk1(Ã)Xi2,k1λi2(Σ)Xi2,1]
(173)

• First consider the terms with k1 = 1 in (173). This gives

2∥β̃∥2 1

T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,i2

X2
i1,1
λi1(Σ)λ1(Ã)λi2(Σ)X

2
i2,1

]

∼ 2
1

T 2
(β̃′Ãβ̃) (tr Ã) (tr Σ)E[

∑
i1,i2

X2
i1,1
λi1(Σ)λi2(Σ)X

2
i2,1

]

= 2
1

T 2
(β̃′Ãβ̃) (tr Ã) (tr Σ)((tr(Σ))2 + (E[X4]− 1) tr(Σ2))

= O(Pb∗(tr Σ)
3) = O(P )

(174)

where in the transition from the first to the second line we have used that λ1 is a

negligible fraction of tr Ã.
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• If k1 ̸= 1 in in (173), the only non-zero terms are with i1 = i2 and they give

2∥β̃∥2 1

T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λk1(Ã)]

∼ 2∥β̃∥2 1

T 2
E[
∑
k ̸=1

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λk1(Ã)]

= 2∥β̃∥2 1

T 2
E[
∑
k ̸=1

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

λ2i1(Σ)X
2
i1,k1

λk1(Ã)]

= 2∥β̃∥2 1

T 2

(
E[
∑
k ̸=1

λ2k(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1

λ2i1(Σ)X
2
i1,k

]

+ E[
∑
k ̸=1

λk(Ã)
∑

i,k1 ̸=1,k

λi(Σ)X
2
i,k

∑
i1

λ2i1(Σ)X
2
i1,k1

λk1(Ã)]

)

= 2∥β̃∥2 1

T 2

(
E[X4] tr(Ã2) tr(Σ3) +

∑
k ̸=1

λ2k(Ã)
∑
i

λi(Σ)
∑
i1 ̸=i

λ2i1(Σ)

+
∑
k ̸=1

λk(Ã)
∑

i,k1 ̸=1,k

λi(Σ)
∑
i1

λ2i1(Σ)λk1(Ã)

)

∼ 2∥β̃∥2 1

T 2

(
tr(Ã2)

(
(E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2)

)
+ ((tr Ã)2 − tr(Ã2)) tr(Σ) tr(Σ2)

)
∼ 2∥β̃∥2 1

T 2
(tr Ã)2 tr(Σ) tr(Σ2) .

(175)

Thus,

Term3 ∼ 2
1

T 2
(β̃′Ãβ̃) (tr Ã) (tr Σ)((tr(Σ))2

+ (E[X4]− 1) tr(Σ2)) + 2∥β̃∥2 1

T 2
(tr Ã)2 tr(Σ) tr(Σ2)

∼ 2
1

T 2
(β̃′Ãβ̃) (tr Ã) (tr Σ)3 + 2∥β̃∥2 1

T 2
(tr Ã)2 tr(Σ) tr(Σ2)

∼ 2∥β̃∥2 1

T 2
(tr Ã)2 tr(Σ) tr(Σ2)

(176)
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E.4 Term4 and Term5 in (154)

We have

E[(E[ε4]− 1) tr(AZtAZt) + (tr(AZt))
2]

= (E[ε4]− 1)E[
∑

λk(Ã)Xi,kλi(Σ)Xi,k1λk1(Ã)Xi1,k1λi1(Σ)Xi1,k]

+ E[(
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k)

2]

(177)

We have

E[(
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k)

2]

= E[
∑

k,k1,i,i1

λk(Ã)λk1(Ã)λi1(Σ)X
2
i1,k1

λi2(Σ)X
2
i2,k2

]

= E[
∑
k

λ2k(Ã)
∑
i1,i2

λi1λi2X
2
i1,k
X2

i2,k
] +

∑
k1 ̸=k2

λk1(Ã)λk2(Ã)(tr(Σ))
2

∼ tr(Ã2)((E[X4]− 1) tr(Σ2) + (tr Σ)2) + ((tr(Ã))2 − tr(Ã2))(tr Σ)2

(178)

Similarly,

(E[ε4]− 1)E[
∑

λk(Ã)Xi,kλi(Σ)Xi,k1λk1(Ã)Xi1,k1λi1(Σ)Xi1,k]

= (E[ε4]− 1)E[
∑
k1=k

λk(Ã)
2X2

i,kλi(Σ)λi1(Σ)X
2
i1,k

]

+ (E[ε4]− 1)E[
∑
k ̸=k1

∑
i

λk(Ã)X
2
i,kλ

2
i (Σ)X

2
i,k1
λk1(Ã)]

∼ (E[ε4]− 1) tr(Ã2)((E[X4]− 1) tr(Σ2) + (tr Σ)2) + (E[ε4]− 1)((tr(Ã))2 − tr(Ã2)) tr(Σ2)

(179)
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Thus,

Term4 + Term5 ∼ tr(Ã2)((E[X4]− 1) tr(Σ2) + (tr Σ)2) + ((tr(Ã))2 − tr(Ã2))(tr Σ)2

+ (E[ε4]− 1) tr(Ã2)((E[X4]− 1) tr(Σ2) + (tr Σ)2) + (E[ε4]− 1)((tr(Ã))2 − tr(Ã2)) tr(Σ2)

∼ (tr(Ã2)(tr Σ)2 + ((tr(Ã))2 − tr(Ã2))(tr Σ)2)
1

T 2

+ (E[ε4]− 1)
(
tr(Ã2)(tr Σ)2 + ((tr(Ã))2 − tr(Ã2)) tr(Σ2)

) 1

T 2

= (tr(Ã))2(tr Σ)2
1

T 2

+ (E[ε4]− 1)
(
tr(Ã2)(tr Σ)2 + ((tr(Ã))2 − tr(Ã2)) tr(Σ2)

) 1

T 2

∼ (tr(Ã))2(tr Σ)2/(T 2)

(180)

because tr(Σ2)/(tr(Σ))2 → 0.

E.5 Equating the terms

By (152),

(
1

T
trE[APFtF

′
t ])

2 ∼ 1

T 2
tr(Ã)2(tr Σ + ∥β̃∥2 tr(Σ2))2

=
1

T 2
tr(Ã)2

(
(tr Σ)2 + 2∥β̃∥2(tr Σ) tr(Σ2) + ∥β̃∥4 (tr(Σ2))2

) (181)

and the claim follows from (165), (172), (176), and (180).

The proof of Lemma 11 is complete. □

F Proof of Theorem 10

Proof of Theorem 10. The first claim follows because, by Lemma 9, the other contribu-

tions do not impact eigenvalue distribution.
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To prove the claim about the eigenvalue distribution of BT , we use a remarkable Theorem

of (Bai and Zhou, 2008). According to (Bai and Zhou, 2008), defining Zt = Ft = S ′
tRt+1, we

need to verify the following technical conditions:

(1) E[ZtZ
′
t] = AP for some matrix AP

(2) E[(Z ′
tBZt − tr(APBP ))

2] = o(T 2) for any bounded matrix sequence BP , P > 0.

(3) The norm of AP is uniformly bounded, and its eigenvalue distribution converges as

P → ∞.

The only non-trivial claim here is item (3), which in turn follows from Lemma 11. The

proof of Theorem 10 is complete. □

G Technical Lemmas for Computing Higher Moments

The following lemma is a direct consequence of (154) and the polarization identity

ab = 0.25((a+ b)2 − (a− b)2) .

Lemma 14 Let Zt = S ′
t−1St−1. Recall also that

Rt+1 = Stβ + εt+1, (182)

where, for brevity, we omit the time index for β = F̃t+1 = βt+1. Thus,

Ft = Ztβ + S ′
t−1εt . (183)
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For any two matrices A,B with A being symmetric, we have

1

T
E[F ′

tAFtF
′
tBFt]

=
1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

T
2 tr(E[β′ZtAZtBZtβ] + E[β′ZtBZtAZtβ])

+
1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

= Term1 + Term2 + Term3 + Term4 + Term5 .

(184)

Proof. When A,B are symmetric, (154) implies

1

T
E[F ′

tAFtF
′
tBFt]

=
1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

+
1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

(185)
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The general case follows because

1

T
E[F ′

tAFtF
′
tBFt] =

1

T
E[F ′

t0.5(A+ A′)FtF
′
t0.5(B +B′)Ft]

=
1

T
trE[Ztββ

′Zt0.5(A+ A′)Ztββ
′Zt0.5(B +B′)]

+
1

T
2 tr(E[Ztββ

′Zt0.5(A+ A′)Zt0.5(B +B′)] + E[Ztββ
′Zt0.5(B +B′)Zt0.5(A+ A′)])

+
1

T
tr(E[(β′Zt0.5(A+ A′)Ztβ)Zt0.5(B +B′)] + E[(β′Zt0.5(B +B′)Ztβ)Zt0.5(A+ A′)])

+
1

T
((κε − 1) trE[Zt0.5(A+ A′)Zt0.5(B +B′)] + E[tr(Zt0.5(A+ A′)) tr(Zt0.5(B +B′))])

=
1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

T
tr(E[β′ZtAZtBZtβ] + E[β′ZtBZtAZtβ] + E[β′ZtA

′ZtBZtβ] + E[β′ZtAZtB
′Ztβ])

+
1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

T
((κε − 1)0.5 tr(E[ZtAZtB] + E[ZtA

′ZtB]) + E[tr(ZtA) tr(ZtB)])

(186)

□
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Lemma 15 For any two matrices A,B, we have

1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼
(
(β̃′Ãβ̃) tr(B̃) + (β̃′B̃β̃) tr(Ã)

)
∥β̃∥2 tr(Σ2)(tr(Σ))2

1

T

+ ∥β̃∥4((tr Ã)(tr B̃) + 2 tr(ÃB̃))(tr(Σ2))2
1

T

+ ∥β̃∥4E[X4] tr(Ã) tr(B̃) tr(Σ4)
1

T
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

T
4∥β̃∥2 tr(ÃB̃) tr(Σ) tr(Σ2)

+
1

T
4∥β̃∥2(tr(Ã) tr(B̃)− tr(ÃB̃)) tr(Σ3)

+
1

T
4
(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
tr(Σ)(tr(Σ2))

1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

T

(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
(tr Σ)3 + 2∥β̃∥2 1

T
(tr Ã)(tr B̃) tr(Σ) tr(Σ2)

1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(tr Ã)(tr B̃) + (E[ε4]− 1) tr(ÃB̃)

)
(tr Σ)2

1

T

(187)

with Ã = Ψ1/2AΨ1/2 and B̃ = Ψ1/2BΨ1/2.
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Proof of Lemma 15. Using (165), (172), (176), and (180) , we get the following result:

1

T
trE[Ztββ

′ZtAZtββ
′ZtB] ∼ 3∥β̃∥4 tr(ÃB̃) (tr(Σ2))2

1

T
+ ∥β̃∥4E[X4] tr(ÃB̃) (tr(Σ4))

1

T

+
(
(β̃′Ãβ̃) tr(B̃) + (β̃′B̃β̃) tr(Ã)

)
∥β̃∥2

(
tr(Σ2)(tr(Σ))2 − 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
1

T

+ ∥β̃∥4E[X4] (tr(Ã) tr(B̃)− tr(ÃB̃)) tr(Σ4)
1

T

+ ∥β̃∥4((tr Ã) tr(B̃)− tr(ÃB̃))(tr(Σ2))2
1

T
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

T
4∥β̃∥2 tr(ÃB̃)((E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2))

+
1

T
4∥β̃∥2(tr(Ã) tr(B̃)− tr(ÃB̃)) tr(Σ3)

+
1

T
4
(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)(
tr(Σ)(tr(Σ2)) + (E[X4]− 1) tr(Σ3)

)
1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

T

(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
(tr Σ)3 + 2∥β̃∥2 1

T 2
(tr Ã)(tr B̃) tr(Σ) tr(Σ2)

1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(tr Ã)(tr B̃) + (E[ε4]− 1) tr(ÃB̃)

)
(tr Σ)2

1

T

+ (E[ε4]− 1)
(
(tr Ã)(tr B̃) − tr(ÃB̃)

)
tr(Σ2)

1

T 2

(188)
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where we have used that(
tr(Σ2)(tr(Σ))2 − 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
∼ tr(Σ2)(tr(Σ))2

(189)

□

Lemma 16 Define ψ∗,1 through the equation

b∗ψ∗,1 = tr((ΣF,tΨ) + λ′FΨλF )) . (190)

Then, we have

1

T
trE[ββ′Ft1F

′
t1
Ft1F

′
t1
Q] ∼ 1

T
tr(Ψ) (tr(Σ))2(b∗ tr Σψ∗,1 + 1)E[β′ΨQβ]

for any uniformly bounded Q that is independent of F.

Proof of Lemma 16. We have

1

T
trE[ββ′Ft1F

′
t1
Ft1F

′
t1
Q] =

1

T
trE[F ′

t1
Ft1F

′
t1
Qββ′Ft1 ] (191)

and hence we are in a position to apply Lemmas 14 and 15 with the two matrices given by

A = I and B = Ψ1/2Qββ′Ψ1/2 so that Ã = Ψ and B̃ = Ψ1/2Qββ′Ψ1/2. Thus, (191) is the
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sum of the following terms:

1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼
(
(β̃′Ψβ̃) tr(Ψ1/2Qββ′Ψ1/2) + (β̃′Ψ1/2Qββ′Ψ1/2β̃) tr(Ψ)

)
∥β̃∥2 tr(Σ2)(tr(Σ))2

1

T

+ ∥β̃∥4((trΨ)(trΨ1/2Qββ′Ψ1/2) + 2 tr(ΨΨ1/2Qββ′Ψ1/2))(tr(Σ2))2
1

T
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

T
4∥β̃∥2 tr(ΨΨ1/2Qββ′Ψ1/2) tr(Σ) tr(Σ2)

+
1

T
4∥β̃∥2(tr(Ψ) tr(Ψ1/2Qββ′Ψ1/2)− tr(ΨΨ1/2Qββ′Ψ1/2)) tr(Σ3)

+
1

T
4
(
β̃′Ψβ̃ (trΨ1/2Qββ′Ψ1/2) + β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)

)
tr(Σ)(tr(Σ2))

1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

T

(
β̃′Ψβ̃ (trΨ1/2Qββ′Ψ1/2) + β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)

)
(tr Σ)3

+ 2∥β̃∥2 1
T
(trΨ)(trΨ1/2Qββ′Ψ1/2) tr(Σ) tr(Σ2)

1

T
((E[ε4]− 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(trΨ)(trΨ1/2Qββ′Ψ1/2) + (E[ε4]− 1) tr(ΨΨ1/2Qββ′Ψ1/2)

)
(tr Σ)2

1

T

(192)

Now, tr(ββ′D) is uniformly bounded almost surely for any bounded D. In addition,

Assumption 2 implies that tr(Σ2) = o(tr(Σ)2) and tr(Σ3) = o(tr(Σ) tr(Σ2)) . As a result,
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many terms become negligible, and we get

1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼ (β̃′Ψ1/2Qββ′Ψ1/2β̃) tr(Ψ) ∥β̃∥2 tr(Σ2)(tr(Σ))2
1

T
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

T
4β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ) tr(Σ)(tr(Σ2))

1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

T
β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)(tr Σ)3

1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼ (trΨ)(trΨ1/2Qββ′Ψ1/2)(tr Σ)2
1

T

(193)

Recall that b∗ = trE[ββ′] = tr((ΣF,tΨ) + λ′λF )). The first term is of the order

b3∗M tr(Σ) tr(Σ2). The second term is of the order b2∗M tr(Σ) tr(Σ2). The third term is of

the order of b2∗M(tr Σ)3 and hence it dominates the second term as well as the first term

because tr(Σ2) = o((tr(Σ))2). Thus, we are left with

1

T
β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)(tr Σ)3 + (trΨ)(trΨ1/2Qββ′Ψ1/2)(tr Σ)2

1

T

∼ 1

T
b∗ψ∗,1 tr(Ψ) (tr(Σ))3E[β′ΨQβ] + (trΨ)E[β′ΨQβ](tr Σ)2

1

T

(194)

where we have used that, by Lemma 5, β′Ψ1/2β̃ ≈ tr((ΣF,tΨ) + λ′λF )) The proof of Lemma

16 is complete. □

H The Martingale Lemma and ξ(z; c)

We start with the following Lemma from KMZ.
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Lemma 17 We have

P−1 tr(A1(zI +BT )
−1A2) − P−1 trE[A1(zI +BT )

−1A2] → 0

almost surely for any bounded A1, A2 that are independent of Ft.

Lemma 18 Let

1

T
tr((zI +BT )

−1Ψσ∗) → ξ(z; c) (195)

almost surely and

1

T
F ′
t(zI +BT,t)

−1Ft → ξ(z; c) , (196)

in probability, where

c−1ξ(z; c)

1 + ξ(z; c)
= 1 − m(−z; c)z (197)

Proof. First, Lemma 11 implies that

1

T
F ′
t(zI +BT,t)

−1Ft − 1

T
tr((zI +BT,t)

−1E[FtF
′
t ]) → 0 .

in probability. Next Lemma 17 applied to our setting implies that for any bounded matrix

QT independent of BT,t we have

1

T
tr((zI +BT,t)

−1QT ) − 1

T
E[tr((zI +BT,t)

−1QT )] → 0
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almost surely. At the same time, by Lemma 7,

E[FtF
′
t ] = ((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ tr(Σ2)(κ− 2)Ψ1/2 diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
) (198)

We have

1

T
tr((zI +BT,t)

−1(tr Σ)2ΨΣF,tΨ) = O(1/T ) (199)

The same argument applies to the second term because the trace of

tr(Σ2)(κ− 2)Ψ1/2 diag(Ψ1/2ΣFΨ
1/2)Ψ1/2

is also uniformly bounded. Thus, we get

1

T
F ′
t(zI +BT,t)

−1Ft ∼ 1

T
tr((zI +BT,t)

−1E[FtF
′
t ])

∼ T−1 tr[(zI +BT,t)
−1Ψσ∗] → ξ(z; c) .

(200)

Now, we have

1 = P−1 trE[(zI +BT )
−1(zI +BT )]

= zm(−z; c) +
1

P
tr

1

T

∑
t

E[(zI +BT )
−1FtF

′
t ]

= zm(−z; c) + 1

P
trE[(zI +BT )

−1FtF
′
t ]

(201)

where we have used symmetry across t in the last step. Using the Sherman-Morrison formula,

we get

1

T
trE[(zI +BT )

−1F ′
tFt] = E[

1
T
F ′
t(zI +BT,t)

−1Ft

1 + 1
T
F ′
t(zI +BT,t)−1Ft

] ,
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where

BT,t =
1

T

∑
τ ̸=t

FτF
′
τ .

Furthermore, since all functions involved are uniformly bounded, a standard argument

implies that we can replace

1

T
F ′
t(zI +BT,t)

−1Ft

with

ξ(z; c)

by (200).43 □

I Expected Return on the Feasible Portfolio

We will, for simplicity, assume σ∗ = 1 and frequently use λ = λF notation. Indeed, λ =

E[FF ′]−1E[F ] ≈ Ψ−1ΨλF = λF .

Proposition 11 We have

E[RF
t+1(z)] =

Γ1,1(z)

1 + ξ(z; c)
, (202)

where

Γ1,1(z) = lim
T,P→∞

λ′E[Ψ(zI +BT )
−1Ψ]λ . (203)

43Indeed, E[ YT

1+YT
− ZT

1+ZT
] = YT−ZT

(1+YT )(1+ZT ) for any random variables YT , ZT . If YT , ZT ≥ 0 then
|YT−ZT |

(1+YT )(1+ZT ) ≤ 1 and hence convergence YT − ZT → 0 in probability implies convergence of expectations.
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Proof of Proposition 11. We start by computing

E[Ft+1] = E[S ′
tRt+1] = E[S ′

t(StF̃t+1 + εt+1)] = tr(Σ)λF (204)

and therefore, by (125), we have

E[RF
t+1(z)] = E[β̂(z)′Ft+1]

= tr(Σ)E[
1

T

∑
t

F ′
t(zI +BT )

−1]λF ∼ E[
1

T

∑
t

F ′
t(zI +BT )

−1]λF ,
(205)

where we have used the normalization trΣ = 1. Now, by the interchangeability of Ft across

t and the Sherman-Morrison formula, we have

E[
1

T

∑
t

F ′
t(zI +BT )

−1]λF

= E[F ′
t(zI +BT )

−1Ψ]λ = E[F ′
t(zI +BT,t)

−1 1

1 + (T )−1F ′
t(zI +BT,t)−1Ft

Ψ]λ ,

(206)

where

BT,t =
1

T

∑
τ ̸=t

FτF
′
τ .

By Lemma 18,

(T )−1F ′
t(zI +BT,t)

−1Ft → ξ(z; c)

is probability and therefore

E[F ′
t(zI +BT,t)

−1 1

1 + (T )−1F ′
t(zI +BT,t)−1Ft

Ψ]λ ∼ E[F ′
t(zI +BT,t)

−1λF ]

1 + ξ(z; c)
, (207)
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whereas E[Ft] = tr(ΣΣε)λF implies

E[F ′
t(zI +BT,t)

−1λF ] = tr(ΣΣε)λ
′E[Ψ(zI +BT,t)

−1λF ] ∼ Γ1,1(z) . (208)

The proof of Proposition 11 is complete.

□

J Computing the Quasi-Moments

Lemma 19 Let

ψ∗,k = limP−1 tr(ΨkΣλ) (209)

and

Γk,l,T (z) ≡ λ′E[Ψk(zI +BT )
−1Ψℓ]λ . (210)

We have

ψ∗,k+ℓ ∼ z Γk,ℓ,T (z) +

(
ψ∗,k+1Γ1,ℓ,T (z) + σ∗Γk+1,ℓ,T

)
(1 + ξ(z; c))−1 (211)

Proof of Lemma 19. Using the Sherman-Morrison formula and Lemma 18, we get

F ′
t(zI+BT )

−1 = F ′
t(zI+BT,t)

−1(1+(T )−1F ′
t(zI+BT,t)

−1Ft)
−1 ∼ F ′

t(zI+BT,t)
−1(1+ξ(z; c))−1
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We also have

E[FtF
′
t ] = ((tr Σ)2 + tr(Σ2/))ΨΣFΨ

+ tr(Σ2/)(κ− 2)Ψ1/2 diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
)

= Σ̂F +ΨΣFΨ + σ∗Ψ ,

(212)

where ∥Σ̂F∥ = o(1), and

ΣF = λλ′ + Σ∗
F . (213)

We will need the following important observation:

Lemma 20 For any sequence

λ′APQPλ → 0 (214)

in probability, for any uniformly bounded QP (even if they correlate with λ) and any AP with

a uniformly bounded trace norm, such that AP is independent of λ.

Proof of Lemma 20. We have

λ′APQPλ = tr(λλ′APQP )

≤ ∥λλ′APQP∥1 ≤ ∥QP∥∞∥λλ′AP∥1

= ∥QP∥∞ tr((λλ′APA
′
Pλλ

′)1/2) = ∥QP∥∞(λ′APA
′
Pλ)

1/2 tr((λλ′)1/2) = (λ′APA
′
Pλ)

1/2∥λ∥

= (tr(APA
′
Pλλ

′))1/2∥λ∥ → (P−1 tr(Σλ))
1/2(P−1 tr(APA

′
PΣλ))

1/2

≤ (P−1 tr(Σλ))
1/2∥Σλ∥1/2(P−1 tr(APA

′
P ))

1/2 → 0

(215)

The proof of Lemma 20 is complete. □
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Thus, for any AP with bounded trace norm, we get

ψ∗,k+ℓ = P−1 tr(Ψk+ℓΣλ) ≈ λ′Ψk+ℓλ = λ′E[Ψk(zI +BT )(zI +BT )
−1Ψℓ]λ

= zΓk,ℓ,T (z) + λ′E[ΨkBT (zI +BT )
−1Ψℓ]λ

=︸︷︷︸
symmetry over t

zΓk,ℓ,T (z) + λ′E[ΨkFtF
′
t(zI +BT )

−1Ψℓ]λ

=︸︷︷︸
(80)

zΓk,ℓ,T (z) + λ′E[ΨkFtF
′
t(zI +BT,t)

−1(1 + (T )−1F ′
t(zI +BT,t)

−1Ft)
−1Ψℓ]λ

∼︸︷︷︸
Lemma 18

zΓk,ℓ,T (z) + λ′E[ΨkFtF
′
t(zI +BT,t)

−1Ψℓ]λ(1 + ξ(z; c))−1

∼︸︷︷︸
(212)

zΓk,ℓ,T (z) + λ′E[Ψk(Σ̂F +ΨΣFΨ + σ∗Ψ)(zI +BT,t)
−1Ψℓ]λ(1 + ξ(z; c))−1

∼ zΓk,ℓ,T (z) + λ′E[Ψk(Ψ(ΣF + λλ′)Ψ + σ∗Ψ)(zI +BT )
−1Ψℓ]λ(1 + ξ(z; c))−1

∼︸︷︷︸
(214)

zΓk,ℓ,T (z) + λ′E[Ψk(λFλ
′
F + σ∗Ψ)(zI +BT )

−1Ψℓ]λ(1 + ξ(z; c))−1

= zΓk,ℓ,T (z) + λ′Ψk+1λE[λ′F (zI +BT )
−1Ψℓ]λ(1 + ξ(z; c))−1

+ λ′k+1
F σ∗(zI +BT )

−1Ψℓλ(1 + ξ(z; c))−1

∼ z Γk,ℓ,T (z) +

(
ψ∗,k+1Γ1,ℓ,T (z) + σ∗Γk+1,ℓ,T

)
(1 + ξ(z; c))−1

(216)

□

Lemma 21 Let

δ(z) = −σ∗z−1(1 + ξ(z; c))−1 . (217)

Then,

Γ1,l(z) =
z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)

1− δ(z)P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)
(218)

110



and

Γk,ℓ = z−1P−1 tr(Ψk+ℓ(I−Ψδ(z))−1Σλ)−z−1P−1 tr(Ψk+1(I−Ψδ(z))−1Σλ)Γ1,ℓ(1+ξ(z; c))
−1

(219)

Proof. We have

Γk,ℓ = ak+1 + δ Γk+1,ℓ (220)

where

ak+1,ℓ = z−1(ψ∗,k+ℓ − ψ∗,k+1Γ1,ℓ(1 + ξ(z; c))−1), δ(z) = −σ∗z−1(1 + ξ(z; c))−1 . (221)

Let us pick z > max(1, ∥Ψ∥) sufficiently large, so that σ∗z
−1(1 + ξ(z; c))−1 < 1 and44

|δkΓk,ℓ(z)| ≤ z−k+1∥λ∥2∥Ψ∥k+ℓ →k→∞ 0 . (222)

Then, since iterating forward, we get

Γk,ℓ =
∞∑
τ=0

ak+τ+1,ℓδ
τ . (223)

Now,

ak+τ+1,ℓ = z−1(ψ∗,k+τ+ℓ−ψ∗,k+τ+1Γ1,ℓ(1+ξ(z; c))
−1), δ(z) = −σ∗z−1(1+ξ(z; c))−1 . (224)

44This uniform exponential decay also implies that the infinite sum of the limits equals the limit of the
infinite sum, as we pass to the P → ∞ limit.
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Γ1,ℓ =
∞∑
τ=0

aτ+2,ℓδ
τ

=
∞∑
τ=0

z−1(ψ∗,1+τ+ℓ − ψ∗,1+τ+1Γ1,ℓ(1 + ξ(z; c))−1)δτ

=
∞∑
τ=0

(z−1(P−1 tr(Ψτ+ℓ+1Σλ)− P−1 tr(Ψτ+2Σλ)Γ1,ℓ(1 + ξ(z; c))−1))δτ

= z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)− z−1P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)Γ1,ℓ(1 + ξ(z; c))−1 ,

(225)

implying that

Γ1,l =
z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)

1− δ(z)P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)
(226)

Then, the same argument implies

Γk,ℓ = z−1P−1 tr(Ψk+ℓ(I−Ψδ(z))−1Σλ)−z−1P−1 tr(Ψk+1(I−Ψδ(z))−1Σλ)Γ1,ℓ(1+ξ(z; c))
−1

(227)

Furthermore,

δ(z) = −σ∗z−1(1 + ξ(z; c))−1, (228)

We have, with λ̃ = λF , that

Γ1,1(z) ≈ z−1λ̃′(I −Ψδ(z))−1λ̃

1− δ(z)λ̃′(I −Ψδ(z))−1λ̃
(229)

□
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K Proof of Theorem 4: Second Moment of the Feasible Efficient

Portfolio

We start with

Lemma 22 We have

G(z; c) =
d

dz
(zξ(z; c)) ∈ (0, cz−2] (230)

satisfies

G(z; c) = M(z;Z∗(z; c)) , (231)

where

M(z;Z) = −1 +
Z

z + cϕ(Z)Z2
, ϕ(z) = P−1 tr(E[FF ′](zI + E[FF ′])−2) . (232)

Proof of Lemma 22. By the master equation,

m(z; c) =
1

1 − c − c z m(z; c)
mσ∗Ψ

(
z

1 − c − c z m(z; c)

)
. (233)

whereas, by the definition of the ξ(z; c) function,

c−1ξ(z; c)

1 + ξ(z; c)
= 1 − m(−z; c)z . (234)

and hence

ξ(z; c) =
1− zm(−z; c)

c−1 − 1 + zm(−z; c)
(235)
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and hence

1 + ξ(z; c) =
c−1

c−1 − 1 + zm(−z; c)
=

1

1− c+ czm(−z; c)
(236)

Differentiating this identity, we get

ξ′(z; c) = −c(zm(−z; c))′(1 + ξ(z; c))2 (237)

Furthermore, differentiating the identity

zm(−z; c) = Z∗(z; c)m(−Z∗(z; c)), (238)

we get

(zm(−z; c))′ = (zm(−z))′(Z∗)Z
′
∗ = (zm(−z))′(Z∗)(1 + ξ(z; c) + zξ′(z; c)) (239)

so that

ξ′(z; c) = −c(zm(−z))′(Z∗)(1 + ξ(z; c) + zξ′(z; c))(1 + ξ(z; c))2 , (240)

implying that

ξ′(z; c) =
−c(zm(−z))′(Z∗)(1 + ξ(z; c))3

1 + c(zm(−z))′(Z∗)z(1 + ξ(z; c))2
(241)

and hence

1+ξ(z; c)+zξ′(z; c) =
1 + ξ(z; c)

1 + c(zm(−z))′(Z∗)z(1 + ξ(z; c))2
=

Z∗(z; c)

z + c(zm(−z))′(Z∗)Z2
∗(z; c)

(242)
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□

Let

Ft =
∑
t

Ft .

Without loss of generality, we assume that κ = 2 because all kurtosis terms vanish

asymptotically due to their vanishing trace norm. Using Lemma 7, we get45

E[(RF
t+1(z))

2] = E[
1

T
Ft

′
(zI +BT )

−1Ft+1F
′
t+1(zI +BT )

−1 1

T
Ft]

= E[
1

T
Ft

′
(zI +BT )

−1Et−[Ft+1F
′
t+1](zI +BT )

−1 1

T
Ft]

=︸︷︷︸
Lemma 7

E[
1

T
Ft

′
(zI +BT )

−1

(
((tr Σ)2 + tr(Σ2))ΨΣFΨ+Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
))

(zI +BT )
−1 1

T
Ft]

≈ E[
1

T
Ft

′
(zI +BT )

−1

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

))
(zI +BT )

−1 1

T
Ft]

=
1

T 2

∑
t1,t2

E[Ft1(zI +BT )
−1

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

∼ Term1 + Term2

(243)

with

Term1 =
1

T
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1 ] (244)

45Et− denotes the expectation averaging over realizations of St and Rt+1.
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and

Term2 =
T (T − 1)

T 2
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

(245)

for any t1 ̸= t2.

K.1 Term1 in (244)

We first deal with the first term. Using the Sherman-Morrison formula and Lemma 18, and

Lemma 7, we get

Term1 =
1

T
trE[

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

∼ 1

T
trE[

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1)

−1Ft1F
′
t1
(zI +BT,t1)

−1](1 + ξ(z; c))−2

∼ 1

T
trE[

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1)

−1](1 + ξ(z; c))−2

(246)

We can now split this expression into several terms. We have

1

T
trE[(tr Σ)2ΨΣFΨ(zI +BT,t)

−1(tr Σ)2ΨΣFΨ(zI +BT,t)
−1](1 + ξ(z; c))−2

=
1

T
trE[ΨΣFΨ(zI +BT,t)

−1ΨΣFΨ(zI +BT,t)
−1](1 + ξ(z; c))−2 → 0

(247)

because

tr(ΣF ) = tr(ΣF,t) + P−1∥λ∥2 = o(P ) + O(1) = o(T ) ,
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and all other matrices involved are uniformly bounded. The second term is

1

T
trE[(tr Σ)2ΨΣFΨ(zI +BT,t)

−1 tr(ΣΣε)Ψ(zI +BT,t)
−1]/(1 + ξ(z; c))2 = O(T−1) (248)

by the same argument. Finally, the last term is

(tr(ΣΣε))
2 1

T
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1]/(1 + ξ(z; c))2 (249)

and it needs to be evaluated directly.

Lemma 23 We have

1

P
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

∼ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1]

→ Γ3(z) =
(
1− (−z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

)
)
(1 + ξ(z; c))4

= c−1(ξ(z; c) + zξ′(z; c))(1 + ξ(z; c))2

(250)

Proof. We have by the Sherman-Morrison formula that

1

P

1

T
trE[Ft1F

′
t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

∼ 1

c

1

T 2
E[F ′

t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1Ft1 ]

= c−1E

[( 1
T
F ′
t1
(zI +BT,t1)

−1Ft1

1 + 1
T
F ′
t1(zI +BT,t1)

−1Ft1

)2
]

∼ c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

(251)

by Lemma 18. Now,

m′(−z; c) = limP−1 trE[(zI +BT )
−2] (252)
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and hence

1 =
1

P
trE[(zI +BT )(zI +BT )

−1(zI +BT )(zI +BT )
−1]

=
1

P
z2 trE[(zI +BT )

−2] + 2z
1

P
trE[(zI +BT )

−2BT ]

+
1

P
trE[BT (zI +BT )

−1BT (zI +BT )
−1]

∼ z2m′(−z; c) + 2z
1

P
trE[(zI +BT )

−2(BT + zI − zI)]

+
1

P

1

T 2

∑
t1,t2

trE[Ft1F
′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

= −z2m′(−z; c) + 2zm(−z; c) + 1

P

1

T
trE[Ft1F

′
t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

+
1

P

T (T − 1)

T 2
trE[Ft1F

′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P
trE[Ft1F

′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P
trE[Ft1F

′
t1
(zI +BT,t1)

−1Ft2F
′
t2
(zI +BT,t2)

−1]/(1 + ξ(z; c))2

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P
E[F ′

t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1Ft1 ]/(1 + ξ(z; c))4

= −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]/(1 + ξ(z; c))4

(253)

where we have defined

BT,t1,t2 =
1

T

∑
τ ̸∈{t1,t2}

FτF
′
τ . (254)
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We also used that

F ′
t1
(zI +BT )

−1 ∼ F ′
t1
(zI +BT,t1)

−1/(1 + ξ(z; c))

by Lemma 18 and the Sherman-Morrison formula.

Now,

1

P
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

=
1

P
trE[

(
((tr Σ)2 + tr(Σ2))ΨΣFΨ

+Ψ
(
tr(ΣΣε) + tr(ΣFΨ) tr(Σ2)

))
(zI +BT,t1,t2)

−1

(
((tr Σ)2 + tr(Σ2))ΨΣFΨ

+Ψ
(
tr(ΣΣε) + tr(ΣFΨ) tr(Σ2)

))
(zI +BT,t1,t2)

−1]

(255)

which coincides with the expression in (246). By the derivations in formulas (247) and (248),

we get

1

P
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

∼ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1] ,

(256)

and hence

1 = −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1]/(1 + ξ(z; c))4

(257)

Finally,

ξ(z; c)

1 + ξ(z; c)
= c(1− zm(−z; c)) (258)
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(1 + z2m′(−z; c)− 2zm(−z; c)− c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

)(1 + ξ(z; c))4

= (
d

dz
(z(1− zm(−z; c)))− c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

)(1 + ξ(z; c))4

= c−1

(
d

dz

( zξ(z; c)

1 + ξ(z; c)

)
(1 + ξ(z; c))2 − (ξ(z; c))2

)
(1 + ξ(z; c))2

= c−1

(
d

dz

(
z − z

1 + ξ(z; c)

)
(1 + ξ(z; c))2 − (ξ(z; c))2

)
(1 + ξ(z; c))2

= c−1

((
1− 1

1 + ξ(z; c)
+

zξ′(z; c)

(1 + ξ(z; c))2

)
(1 + ξ(z; c))2 − (ξ(z; c))2

)
(1 + ξ(z; c))2

= c−1(ξ(z; c) + zξ′(z; c))(1 + ξ(z; c))2

(259)

The proof of Lemma 23 is complete. □

We conclude that the first term from (243) characterized in (246) satisfies

Term1 =
1

T
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1 ]

∼ (1 + ξ(z; c))−2cΓ3(z)

(260)

because 1/T ∼ c/P.
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K.2 Term2 in (245)

We now proceed with the second term (245). By the Sherman-Morrison formula and Lemma

18,

E[F ′
t1
(zI +BT )

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

∼ E[F ′
t1
(zI +BT,t1)

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t2)

−1Ft2 ]/(1 + ξ(z; c))2

∼ E[F ′
t1

(
(zI +BT,t1,t2)

−1 −
1
T
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t2(zI +BT,t1,t2)

−1Ft2

)
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)(
(zI +BT,t1,t2)

−1

−
1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

)
Ft2 ]/(1 + ξ(z; c))2

= Term1 + Term2 + Term3

(261)

where

Term1 = E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1,t2)

−1Ft2 ]/(1 + ξ(z; c))2

Term2 = −2E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

Term3 = E[F ′
t1

1
T
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t2(zI +BT,t1,t2)

−1Ft2(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

) 1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

(262)

We now analyze each term separately.
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K.3 Term1 in (262)

We will need the following lemma.

Lemma 24 We have

F (A) = λ′E[(zI +BT )
−1A(zI +BT )

−1]λ → 0 (263)

for any A with uniformly bounded trace norm, with A independent of λ.

Proof of Lemma 24. We know from Lemma 20 that λ′E[A(zI + BT )
−1]λ → 0. Further-

more,

λ′E[A(zI +BT )
−1]λ = λ′E[(zI +BT )

−1(zI +BT )A(zI +BT )
−1]λ

=︸︷︷︸
symmetry

zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ +
1

T
λ′E[(zI +BT )

−1FtF
′
tA(zI +BT )

−1λ]

= zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ E[
(
(zI +BT,t)

−1 −
1
T
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1

1 + 1
T
F ′
t(zI +BT,t)−1Ft

)
FtF

′
tA(zI +BT )

−1λ]

≈ zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ + (1 + ξ(z; c))−1λ′E[(zI +BT,t)
−1FtF

′
tA

×
(
(zI +BT,t)

−1 −
1
T
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1

1 + ξ(z; c)

)
λ]

= zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ (1 + ξ(z; c))−1λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
A(zI +BT,t)

−1]λ

− (1 + ξ(z; c))−2λ′E[(zI +BT,t)
−1FtF

′
tA

1

T
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1]λ

≈ zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ (1 + ξ(z; c))−1λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
A(zI +BT,t)

−1]λ

−Q(z)(1 + ξ(z; c))−2λ′E[(zI +BT,t)
−1FtF

′
t(zI +BT,t)

−1]λ

(264)
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where

Q(z) = F ′
tA

1

T
(zI +BT,t)

−1Ft → T−1 trE[ΨA(zI +BT,t)
−1] → 0 (265)

because ∥A∥1 = o(P ) by assumption, and

λ′E[(zI +BT,t)
−1FtF

′
t(zI +BT,t)

−1]λ

= λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t)

−1]λ = O(1) .
(266)

Thus, we get

o(1) ≈ zF (A) + (1 + ξ(z; c))−1 F ((ΨΣFΨ+Ψ)A) (267)

where o(1) is uniform, and the same iterative argument as in the proof of Lemma 21

give a power series representation for F ((ΨΣFΨ + Ψ)kA) for all k, and the same uniform

boundedness argument implies that F (A) = 0. The proof of Lemma 24 is complete. □

Now, E[Ft] = tr(ΣΣε)λF and therefore

(1 + ξ(z; c))2Term1 = E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1,t2)

−1Ft2 ]

∼ 1

N3
(tr(Σ))2λ′F E[(zI +BT,t1,t2)

−1(
(tr Σ)2Ψ(ΣF,t + λλ′)Ψ + Ψ tr(ΣΣε)

)
(zI +BT,t1,t2)

−1]λF

=
1

N4
(tr(Σ))2λ′F E[(zI +BT,t1,t2)

−1(tr Σ)2ΨΣF,tΨ(zI +BT,t1,t2)
−1]λF

+
1

N4
(tr(Σ))2λ′F E[(zI +BT,t1,t2)

−1(tr Σ)2Ψλλ′F (zI +BT,t1,t2)
−1]λF

+
1

N3
(tr(Σ))2λ′F E[(zI +BT,t1,t2)

−1(tr ΣΣε)Ψ(zI +BT,t1,t2)
−1]λF

∼ Γ1,1(z)
2 + Γ4,T (z) ,

(268)
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where Γ4 is defined in the following lemma.

Lemma 25 We have

σ∗λ
′
FE[(zI +BT,t1,t2)

−1Ψ(zI +BT,t1,t2)
−1]λF = Γ4,T (z)

→ Γ4(z) =
Γ1,1(z) + zΓ′

1,1(z)− (Γ1,1(z))
2(1 + ξ(z; c))−2

(1 + ξ(z; c))−2

(269)

Proof. We have by the symmetry across t and the Sherman-Morrison formula and Lemma

18 that

Γ1,1(z) ∼ λ′E[Ψ(zI +BT )
−1Ψ]λ = λ′E[Ψ(zI +BT )

−1(zI +BT )(zI +BT )
−1Ψ]λ

= z λ′E[Ψ(zI +BT )
−1(zI +BT )

−1Ψ]λ + λ′E[Ψ(zI +BT )
−1BT (zI +BT )

−1Ψ]λ

= −z Γ′
1,1,T (z) + λ′E[Ψ(zI +BT )

−1 1

T

∑
t

FtF
′
t(zI +BT )

−1Ψ]λ

= −z Γ′
1,1,T (z) + λ′E[Ψ(zI +BT )

−1FtF
′
t(zI +BT )

−1Ψ]λ

∼ −z Γ′
1,1,T (z) + λ′E[Ψ(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−2

= −z Γ′
1,1,T (z)

+ λ′E[Ψ(zI +BT,t)
−1

(
((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ Ψ
(
tr(ΣΣε) + tr(ΣFΨ) tr(Σ2)

))
(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−2

∼ −z Γ′
1,1,T (z) + (Γ1,1(z))

2(1 + ξ(z; c))−2

+ Γ4,T (z)(1 + ξ(z; c))−2

(270)

The claim follows now because Γ′
1,1,T (z) → Γ′

1,1(z) by standard properties of analytic

functions. The proof of Lemma 25 is complete. □
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K.4 Term2 in (262)

The next term in (262) is (note the factor of 2 as it appears two times):

Term2 = −2E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

= −2E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

λF ] tr(Σ)/(1 + ξ(z; c))2

∼ −2E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

λF ]/(1 + ξ(z; c))2

= −2(1 + ξ(z; c))−2E[XTYT ],

(271)

where we have used that

E[Ft2 ] = λF , (272)

and where

YT = F ′
t1
(zI +BT,t1,t2)

−1λ

XT = F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

(273)
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We will need the following technical lemma whose proof follows directly from the Cauchy-

Schwarz inequality.

Lemma 26 If XT → X in probability and is uniformly bounded and E[Y 2
T ] is uniformly

bounded. Then,

E[(XT −X)YT ] → 0

Then, we will need

Lemma 27 We have

E[(YT )
2]

is uniformly bounded whereas

E[YT ] = E[F ′
t1
(zI +BT,t1,t2)

−1λ] → Γ1,1(z) . (274)

Proof. Recall that

λ′Ψk(zI +BT )
−1Ψℓλ → Γk,l(z) (275)

by Lemma 21.
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We have

E[
(
F ′
t1
(zI +BT,t1,t2)

−1λ
)2
]

= E[F ′
t1
(zI +BT,t1,t2)

−1λλ′(zI +BT,t1,t2)
−1Ft1 ]

= trE[(zI +BT,t1,t2)
−1λλ′(zI +BT,t1,t2)

−1Ft1F
′
t1
]

∼ trE[(zI +BT,t1,t2)
−1λλ′(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
] ≤ Kz−2

(276)

for some K > 0. The proof of Lemma 27 is complete. □

Recall that

YT = F ′
t1
(zI +BT,t1,t2)

−1λ

and

XT = F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

(277)

Now, we know from the proof of Lemma 11 that

1

T
F ′
tAFt −

1

T
tr(AE[FtF

′
t ]) → 0
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in L2 and

F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

) 1
T
(zI +BT,t1,t2)

−1Ft1

∼ 1

T
trE[(zI +BT,t1,t2)

−1
(
Ψ(ΣF,t + λλ′)Ψ + σ∗Ψ

)
× (zI +BT,t1,t2)

−1
(
Ψ(ΣF,t + λλ′)Ψ + σ∗Ψ

)
]

∼︸︷︷︸
(214) and Lemma 24

1

T
trE[(zI +BT,t1,t2)

−1
(
Ψλλ′F + σ∗Ψ

)
× (zI +BT,t1,t2)

−1
(
Ψλλ′Ψ+ σ∗Ψ

)
]

∼ 1

T
trE[(zI +BT,t1,t2)

−1Ψλλ′Ψ(zI +BT,t1,t2)
−1Ψλλ′F ]

+ 2
1

T
trE[(zI +BT,t1,t2)

−1Ψλλ′Ψ(zI +BT,t1,t2)
−1Ψσ∗]

+ σ2
∗
1

T
trE[(zI +BT,t1,t2)

−1Ψ(zI +BT,t1,t2)
−1Ψ]

∼ cΓ3(z)

(278)

by Lemma (23) because the λ-terms are O(T−1). Furthermore, XT is uniformly bounded by

the Cauchy-Schwarz inequality. Thus,

XT → cΓ3(z)

1 + ξ(z; c)

and

E[YT ] → Γ1,1(z)
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by Lemma 27, and Lemma 26 and formula (271) imply that

Term2 ∼ −2
cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3
. (279)

K.5 Term3 in (262)

Finally, we now deal with Term3 in (262).

Lemma 28 Term3 in (262) converges to zero.

Proof of Lemma 28. We have

Term3 = E[F ′
t1

1
T
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t2(zI +BT,t1,t2)

−1Ft2(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

) 1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

= E[XTYT ] /(1 + ξ(z; c))2 ,

(280)

where we have defined

XT =

(
1
T
F ′
t1
(zI +BT,t1,t2)

−1Ft2

)2
(1 + 1

T
F ′
t1(zI +BT,t1,t2)

−1Ft1)(1 +
1
T
F ′
t2(zI +BT,t1,t2)

−1Ft2)

and

YT = F ′
t2
(zI +BT,t1,t2)

−1

(
ΨΣFΨ + σ∗Ψ

)
(zI +BT,t1,t2)

−1Ft1 .

The first observation is that XT is uniformly bounded by the Cauchy-Schwarz inequality and

has a O(1/T ) L2-norm by Lemma 29. Since the first component of YT ,

F ′
t2
(zI +BT,t1,t2)

−1ΨΣFΨ(zI +BT,t1,t2)
−1Ft1 .
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has a o(T ) L2-norm, we get that this part is negligible by Lemma 26.

Lemma 29 We have that

E[(F ′
t1
AFt2)

2] = O(∥A∥1 ∥A∥∞) .

for any A. Thus,

(
1

T
F ′
t1
(zI +BT,t1,t2)

−1Ft2

)2

converges to zero in L1, while

F ′
t2
(zI +BT,t1,t2)

−1ΨΣFΨ(zI +BT,t1,t2)
−1Ft1

has a uniformly bounded L2-norm because tr(ΣF ) = o(T ).

Proof. We have

E[(F ′
t1
AFt2)

2] = N−2E[F ′
t1
AFt2F

′
t2
AFt1 ]

= N−2 trE[AFt2F
′
t2
AFt1F

′
t1
]

∼ trE[A

(
ΨΣFΨ + σ∗Ψ

)

× A

(
ΨΣFΨ + σ∗Ψ

))
]

(281)

The proof of Lemma 29 is complete. □

Lemma 30 We have

E[(F ′
t1
AFt2)

4] = O(P 2)
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for any uniformly bounded A.

Indeed, Lemma 30 implies that

E[X2
T ] ≤ T−4E[(F ′

t1
(zI +BT,t1,t2)

−1Ft2)
4] = O(P 2/T 4)

while Lemma 29 implies that

E[Y 2
T ] = O(P ) .

Thus,

|E[XTYT ]|2 ≤ E[X2
T ]E[Y

2
T ] = O(P 2/T 4)O(P ) → 0

and the claim follows.

Proof of Lemma 30. Without loss of generality, we may assume that A is symmetric.

Recall that

Rt = St−1βt + εt, (282)

and

Ft = S ′
t−1Rt = S ′

t−1St−1βt + S ′
t−1εt = Ztβ + S ′

t−1εt (283)

and therefore

FtF
′
t = Ztββ

′Zt + S ′
t−1εtβ

′Zt + Ztβε
′
tSt−1 + S ′

t−1εtε
′
tSt−1 . (284)
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and formula (154) applied to t = t1 implies

E[(F ′
t1
AFt2)

4] = E[F ′
t1
AFt2F

′
t2
AFt1F

′
t1
AFt2F

′
t2
AFt1 ]

= trE[Ft1F
′
t1
AFt2F

′
t2
AFt1F

′
t1
AFt2F

′
t2
A]

= trE[Zt1ββ
′Zt1AFt2F

′
t2
AZt1ββ

′Zt1AFt2F
′
t2
A]

+ trE[Zt1ββ
′Zt1AFt2F

′
t2
AZt1AFt2F

′
t2
A]

+ 2 trE[(β′Zt1AFt2F
′
t2
AZt1β)Zt1AFt2F

′
t2
A]

+ ((κε − 1) trE[Zt1AFt2F
′
t2
AZt1AFt2F

′
t2
A]

+ E[tr(Zt1AFt2F
′
t2
A)2]

(285)

We then again apply (154) to t = t2. It is then straightforward to show that the leading

contribution will be

E[tr(Zt1AZt2A)
2] = E[

(∑
Xi1,k1,t1λi1(Σ)Xi1,k2,t1λk2(Ã)Xi2,k2,t2λi2(Σ)Xi2,k1,t2λk1(Ã)

)2

]

= E[
∑

Xi1,k1,t1λi1(Σ)Xi1,k2,t1λk2(Ã)Xi2,k2,t2λi2(Σ)Xi2,k1,t2λk1(Ã)

×Xĩ1,k̃1,t1
λĩ1(Σ)Xĩ1,k̃2,t1

λk̃2(Ã)Xĩ2,k̃2,t2
λi2(Σ)Xĩ2,k̃1,t2

λk̃1(Ã)]

(286)

Non-zero terms must have that (i1, k1), (i1, k2), (̃i1, k̃1), (̃i2, k̃2) is coming in at least two

identical pairs. For example, k1 = k2, k̃1 = k̃2 will give tr(Σ)4(tr(Ã2))2. All other terms

will be even smaller because more indices should be equal. For example, if k1 = k̃1 we ought

to have i1 = ĩ1. The proof of Lemma 30 is complete. □

Thus, (280) converges to zero.

The proof of Lemma 28 is complete. □
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Summarizing, we get from (271) and (268), (279), that

Term2 = (1 + ξ(z; c))−2(Γ1,1(z)
2 + Γ4(z)) − 2

cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3
(287)

and (243) implies

E[(RF
t+1(z))

2] ∼︸︷︷︸
(243)

Term1 + Term2

∼︸︷︷︸ (260) (1 + ξ(z; c))−2cΓ3(z) + Term2

∼︸︷︷︸
(287)

(1 + ξ(z; c))−2cΓ3(z) + (1 + ξ(z; c))−2(Γ1,1(z)
2 + Γ4(z)) − 2

cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3

(288)

and the final expression follows from Lemma 25:

Γ1,1(z)
2 + Γ4(z) = Γ1,1(z)

2 +
Γ1,1(z) + zΓ′

1,1(z)− (Γ1,1(z))
2(1 + ξ(z; c))−2

(1 + ξ(z; c))−2
(289)

L Pricing Errors

Proof of Proposition 6. We have

PricingError(z; cq; q) = E[F ′(1− λ(z; q)′F (q))]E[FF ′]−1E[(1− λ(z; q)′F )F ]

= (E[F ]− E[FF (q)′]λ(z; q))′E[FF ′]−1(E[F ]− E[FF (q)′]λ(z; q))

= E[F ]′E[FF ′]−1E[F ]− 2E[RF (z; q)F ′]E[FF ′]−1E[F ]︸ ︷︷ ︸
directional

+ E[RF (z; q)F ′]E[FF ′]−1E[RF (z; q)F ]︸ ︷︷ ︸
risk

= E[F ]′E[FF ′]−1E[F ]− 2E[RF (z; q)] + E[(RF (z; q))2]

(290)
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We have

E

[
λ̂(z; q)′

(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
((0+)I + B̂T̂ )

−1

(
1

T̂

∑
τ

Fτ

)]
(291)

Now, all matrices here have a block structure:(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
= [B̂T̂ (q) + (0+)I , Ψ̂1,2] (292)

where Ψ̂1,2 ∈ RP1×(P−P1) and, assuming for simplicity that

(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
((0+)I + B̂T̂ )

−1 = [IP1×P1 , 0P1×(P−P1)] (293)

by the definition of the inverse matrix. Namely,

(A,B)

A B

C D

−1

= (I, 0) (294)

Thus,

E[RF (z; q)F ′]E[FF ′]−1 = λ̂(z; q)′(I, 0) (295)

and hence

E[RF (z; q)F ′]E[FF ′]−1E[RF (z; q)F ]

= E[RF (z; q)F ′]E[FF ′]−1E[FF ′]E[FF ′]−1E[RF (z; q)F ]

= λ̂(z; q)′E[F (q)F (q)′]λ̂(z; q) .

(296)
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Finally, the last identity follows from

D = 1 − 2E[R̂M ] + E[(R̂M)2] = 1− 2E(Z∗) + V(Z∗) +G(z; c)R(Z∗) = R(Z∗) +G(z; c)R(Z∗)

(297)

□

M Robustness Check: Turnover

To establish that our fundamental findings are not contingent on signals with exceptionally

high turnover, we replicate our main experiments, excluding the 20 signals exhibiting the

highest turnover. We define turnover for each characteristic i as the temporal and cross-

sectional mean of the absolute variation in the rank-standardized characteristic from one

month to the next. Formally, this can be expressed as:

Turnoveri =
1

τ

τ∑
t=1

1

Nt

Nt∑
k=1

|Xi,k,t −Xi,k,t| (298)

Table 1 displays the turnover values for the top 20 characteristics with the highest

turnover rates. We exclude these characteristics from our original set of 130, as detailed in

Section 5, and then rerun our principal experiment. The estimated VoC curves are depicted

in Figure 8. Remarkably, the outcomes closely mirror those illustrated in Figure 2, thereby

confirming that our primary empirical findings are not influenced by characteristics with

high turnover rates.
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Xi Turnoveri Xi Turnoveri

ret 1 0 0.351 rmax1 21d 0.230

seas 1 1an 0.337 rmax5 21d 0.211

rskew 21d 0.322 bidaskhl 21d 0.201

coskew 21d 0.322 ivol ff3 21d 0.196

iskew ff3 21d 0.321 ivol capm 21d 0.192

iskew capm 21d 0.320 ivol hxz4 21d 0.192

iskew hxz4 21d 0.308 rvol 21d 0.180

rmax5 rvol 21d 0.301 resff3 6 1 0.151

beta dimson 21d 0.283 prc highprc 252d 0.151

ret 3 1 0.241 ret 6 1 0.150

Table 1: This table enumerates the 20 characteristics with the highest turnover in our
sample. The first column designates the names of the characteristics, as articulated in
Jensen et al. (Forthcoming). The second column delineates the associated turnover values,
as formalized in Equation (298).



(a) Expected Return (b) Second Moment

(c) Sharpe Ratio (d) Pricing Error

Figure 8: Out-of-sample Performance of Complex SDF Model built on low turnover
characteristics.
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